• Chinese Optics Letters
  • Vol. 22, Issue 10, 101202 (2024)
Zhenrong Shi1, Zhonghao Li1, Huanfei Wen1, Hao Guo1..., Zongmin Ma2, Jun Tang2,* and Jun Liu1,**|Show fewer author(s)
Author Affiliations
  • 1School of Instrument and Electronics, North University of China, Taiyuan 030051, China
  • 2School of Semiconductors and Physics, North University of China, Taiyuan 030051, China
  • show less
    DOI: 10.3788/COL202422.101202 Cite this Article Set citation alerts
    Zhenrong Shi, Zhonghao Li, Huanfei Wen, Hao Guo, Zongmin Ma, Jun Tang, Jun Liu, "Simultaneous detection of position and temperature of micromagnet using a quantum microscope," Chin. Opt. Lett. 22, 101202 (2024) Copy Citation Text show less
    References

    [1] J. V. Vidal, V. Slabov, A. L. Kholkin et al. Hybrid triboelectric-electromagnetic nanogenerators for mechanical energy harvesting: a review. Nano Micro Lett., 13, 199(2021).

    [2] S. Choi, S. H. Kim, Y. K. Yoon et al. A magnetically excited and sensed MEMS-based resonant compass. IEEE Trans. Magn., 42, 3506(2006).

    [3] Y. Zheng, H. Zhao, Y. Cai et al. Recent advances in one-dimensional micro/nanomotors: fabrication, propulsion and application. Nano Micro Lett., 15, 20(2022).

    [4] P. Wrede, O. Degtyaruk, S. Kumar et al. Optoacoustic tracking and magnetic manipulation of cell-sized microrobots in mice. Clinical and Translational Biophotonics, TTu4B-6(2022).

    [5] Y. Ye, C. Y. Zhang, C. L. He et al. A review on applications of capacitive displacement sensing for capacitive proximity sensor. IEEE Access, 8, 45325(2020).

    [6] A. S. Fiorillo, C. D. Critello, S. A. Pullano. Theory, technology and applications of piezoresistive sensors: a review. Sens. Actuators A Phys., 281, 156(2018).

    [7] Z. H. Shah, M. Sokolich, S. Mallick et al. Fabrication of three-lobed magnetic microrobots for cell transportation. J. Mater. Chem. B, 11, 8926(2023).

    [8] H. L. Shen, S. X. Cai, Z. Wang et al. Magnetically driven microrobots: recent progress and future development. Mater. Design, 227, 111735(2023).

    [9] F. Zhao, W. B. Rong, L. F. Wang et al. Photothermal-responsive shape-memory magnetic helical microrobots with programmable addressable shape changes. ACS Appl. Mater. Inter., 15, 25942(2023).

    [10] D. Gong, N. Celi, L. Xu et al. CuS nanodots-loaded biohybrid magnetic helical microrobots with enhanced photothermal performance. Mater. Today Chem., 23, 100694(2022).

    [11] D. F. Li, Y. C. Zhang, C. Liu et al. Review of photoacoustic imaging for microrobots tracking in vivo. Chin. Opt. Lett., 19, 111701(2021).

    [12] Q. Q. Wang, L. Zhang. External power-driven microrobotic swarm: from fundamental understanding to imaging-guided delivery. ACS Nano, 15, 149(2021).

    [13] M. Wang, T. Y. Wu, R. Liu et al. Selective and independent control of microrobots in a magnetic field: a review. Engineering, 24, 21(2023).

    [14] E. Persky, I. Sochnikov, B. Kalisky. Studying quantum materials with scanning SQUID microscopy. Annu. Rev. Condens. Matter Phys., 13, 385(2022).

    [15] A. Elzwawy, H. Piskin, N. Akdogan et al. Current trends in planar Hall effect sensors: evolution, optimization, and applications. J. Phys. D Appl. Phys., 54, 353002(2021).

    [16] Y. R. Bai, J. Z. Yin, J. X. Cheng. Bond-selective imaging by optically sensing the mid-infrared photothermal effect. Sci. Adv., 7, eabg1559(2021).

    [17] H. Jayan, H. B. Pu, D. W. Sun. Recent developments in Raman spectral analysis of microbial single cells: techniques and applications. Crit. Rev. Food Sci., 62, 4294(2022).

    [18] J. F. Barry, J. M. Schloss, E. Bauch et al. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys., 92, 051004(2020).

    [19] M. Fujiwara, Y. Shikano. Diamond quantum thermometry: from foundations to applications. Nanotechnology, 32, 482002(2021).

    [20] M. W. Doherty, N. B. Manson, P. Delaney et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep., 528, 1(2013).

    [21] A. Gali. Ab initio theory of the nitrogen-vacancy center in diamond. Nanophotonics, 8, 1907(2019).

    [22] L. Rondin, J. P. Tetienne, T. Hingant et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys., 77, 056503(2014).

    [23] D. Suter, F. Jelezko. Single-spin magnetic resonance in the nitrogen-vacancy center of diamond. Prog. Nucl. Mag. Res. Sp., 98, 50(2017).

    [24] R. Tanos, W. Akhtar, S. Monneret et al. Optimal architecture for diamond-based wide-field thermal imaging. AIP Adv., 10, 025027(2020).

    [25] Z. R. Shi, Z. H. Li, Y. L. Liang et al. Multichannel control for optimizing the speed of imaging in quantum diamond microscope. IEEE Sens. J., 23, 24366(2023).

    [26] Y. Chen, H. Guo, W. Li et al. Large-area, tridimensional uniform microwave antenna for quantum sensing based on nitrogen-vacancy centers in diamond. Appl. Phys., 11, 123001(2018).

    [27] Z. Li, Z. Li, Z. Shi et al. Design of a high-bandwidth uniform radiation antenna for wide-field imaging with ensemble NV color centers in diamond. Micromachines, 13, 1007(2022).

    [28] Y. Zhang, Z. Li, Y. Fang et al. High-sensitivity DC magnetic field detection with ensemble NV centers by pulsed quantum filtering technology. Opt. Express, 28, 16191(2020).

    [29] C. Foy, L. Zhang, M. E. Trusheim et al. Wide-field magnetic field and temperature imaging using nanoscale quantum sensors. ACS Appl., 12, 26525(2020).

    [30] J. M. Schloss, J. F. Barry, M. J. Turner et al. Simultaneous broadband vector magnetometry using solid-state spins. Phys. Rev. Appl., 10, 034044(2018).

    Zhenrong Shi, Zhonghao Li, Huanfei Wen, Hao Guo, Zongmin Ma, Jun Tang, Jun Liu, "Simultaneous detection of position and temperature of micromagnet using a quantum microscope," Chin. Opt. Lett. 22, 101202 (2024)
    Download Citation