[1] Ekimov A I, Efros A L, Onushchenko A A. Quantum size effect in semiconductor microcrystals[J]. Solid State Communications, 56, 921-924(1985).
[2] Liu H C, Zhong H Y, Zheng F K et al. Near-infrared lead chalcogenide quantum dots: synthesis and applications in light emitting diodes[J]. Chinese Physics B, 28, 128504(2019).
[3] Lu H P, Carroll G M, Neale N R et al. Infrared quantum dots: progress, challenges, and opportunities[J]. ACS Nano, 13, 939-953(2019).
[4] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society, 115, 8706-8715(1993).
[5] Schaller R D, Klimov V I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion[J]. Physical Review Letters, 92, 186601(2004).
[6] Ellingson R J, Beard M C, Johnson J C et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots[J]. Nano Letters, 5, 865-871(2005).
[7] Zhang Z, Chen Z, Yuan L et al. A new passivation route leading to over 8% efficient PbSe quantum-dot solar cells via direct ion exchange with perovskite nanocrystals[J]. Advanced Materials, 29, 1703214(2017).
[8] Wang W, Gu Q, Chen Q P et al. Investigation of PbSe quantum dot-doped glass fibers with broadband mid-infrared emission[J]. Chinese Journal of Lasers, 49, 0101013(2022).
[9] Wehrenberg B L, Wang C J, Guyot-Sionnest P. Interband and intraband optical studies of PbSe colloidal quantum dots[J]. The Journal of Physical Chemistry B, 106, 10634-10640(2002).
[10] Zhang X L, Wang L, Li D et al. PbSe based core/shell quantum dots: from colloidal synthesis to optoelectronic application[J]. Chinese Journal of Luminescence, 41, 631-645(2020).
[11] Yu W W, Falkner J C, Shih B S et al. Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent[J]. Chemistry of Materials, 16, 3318-3322(2004).
[12] Cheng C, Bo J F, Yan J H et al. Experimental realization of a PbSe-quantum-dot doped fiber laser[J]. IEEE Photonics Technology Letters, 25, 572-575(2013).
[13] Hu W J, Gao S, Prasad P N et al. Employing photoassisted ligand exchange technique in layered quantum dot LEDs[J]. Journal of Nanomaterials, 2012, 719169(2012).
[14] Hu W J, Henderson R, Zhang Y et al. Near-infrared quantum dot light emitting diodes employing electron transport nanocrystals in a layered architecture[J]. Nanotechnology, 23, 375202(2012).
[15] Hyun B R, Marus M, Zhong H Y et al. Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals[J]. Chinese Physics B, 29, 018503(2019).
[16] Choi J J, Lim Y F, Santiago-Berrios M B et al. PbSe nanocrystal excitonic solar cells[J]. Nano Letters, 9, 3749-3755(2009).
[17] Semonin O E, Luther J M, Choi S et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell[J]. Science, 334, 1530-1533(2011).
[18] Zhang Z L, Chen Z H, Zhang J B et al. Significant improvement in the performance of PbSe quantum dot solar cell by introducing a CsPbBr3 perovskite colloidal nanocrystal back layer[J]. Advanced Energy Materials, 7, 1601773(2017).
[19] Dolatyari M, Rostami A, Mathur S et al. Trap engineering in solution processed PbSe quantum dots for high-speed MID-infrared photodetectors[J]. Journal of Materials Chemistry C, 7, 5658-5669(2019).
[20] Fu C J, Wang H W, Song T J et al. Stability enhancement of PbSe quantum dots via post-synthetic ammonium chloride treatment for a high-performance infrared photodetector[J]. Nanotechnology, 27, 065201(2016).
[21] Sarasqueta G, Choudhury K R, So F. Effect of solvent treatment on solution-processed colloidal PbSe nanocrystal infrared photodetectors[J]. Chemistry of Materials, 22, 3496-3501(2010).
[22] Sarasqueta G, Choudhury K R, Subbiah J et al. Organic and inorganic blocking layers for solution-processed colloidal PbSe nanocrystal infrared photodetectors[J]. Advanced Functional Materials, 21, 167-171(2011).
[23] Sykora M, Koposov A Y, McGuire J A et al. Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals[J]. ACS Nano, 4, 2021-2034(2010).
[24] Bae W K, Joo J, Padilha L A et al. Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine[J]. Journal of the American Chemical Society, 134, 20160-20168(2012).
[25] Mi S H, Young W J, Sohee J et al. Oxygen aided photoresponse enhancement of air-stable PbSe quantum dot based photoconductors[J]. Optical Materials Express, 7, 2905-2912(2017).
[26] Woo J Y, Ko J H, Song J H et al. Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100)[J]. Journal of the American Chemical Society, 136, 8883-8886(2014).
[27] Lin Q L, Yun H J, Liu W Y et al. Phase-transfer ligand exchange of lead chalcogenide quantum dots for direct deposition of thick, highly conductive films[J]. Journal of the American Chemical Society, 139, 6644-6653(2017).
[28] Pearson R G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 85, 3533-3539(1963).
[29] Moreels I, Fritzinger B, Martins J C et al. Surface chemistry of colloidal PbSe nanocrystals[J]. Journal of the American Chemical Society, 130, 15081-15086(2008).
[30] Shrestha A, Batmunkh M, Tricoli A et al. Near-infrared active lead chalcogenide quantum dots: preparation, post-synthesis ligand exchange, and applications in solar cells[J]. Angewandte Chemie, 58, 5202-5224(2019).
[31] Luther J M, Law M, Song Q et al. Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1, 2-ethanedithiol[J]. ACS Nano, 2, 271-280(2008).
[32] Liu Y, Gibbs M, Puthussery J et al. Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids[J]. Nano Letters, 10, 1960-1969(2010).
[33] Zarghami M H, Liu Y, Gibbs M et al. P-Type PbSe and PbS quantum dot solids prepared with short-chain acids and diacids[J]. ACS Nano, 4, 2475-2485(2010).
[34] Talapin D V, Murray C B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors[J]. Science, 310, 86-89(2005).
[35] Gao Y N, Aerts M, Sandeep C S S et al. Photoconductivity of PbSe quantum-dot solids: dependence on ligand anchor group and length[J]. ACS Nano, 6, 9606-9614(2012).
[36] Law M, Luther J M, Song Q et al. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines[J]. Journal of the American Chemical Society, 130, 5974-5985(2008).
[37] Koleilat G I, Levina L, Shukla H et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots[J]. ACS Nano, 2, 833-840(2008).
[38] Scheele M, Engel J H, Ferry V E et al. Nonmonotonic size dependence in the hole mobility of methoxide-stabilized PbSe quantum dot solids[J]. ACS Nano, 7, 6774-6781(2013).
[39] Kovalenko M V, Scheele M, Talapin D V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands[J]. Science, 324, 1417-1420(2009).
[40] Lee J S, Kovalenko M V, Huang J et al. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays[J]. Nature Nanotechnology, 6, 348-352(2011).
[41] Fafarman A T, Koh W K, Diroll B T et al. Thiocyanate-capped nanocrystal colloids: vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids[J]. Journal of the American Chemical Society, 133, 15753-15761(2011).
[42] Nag A, Kovalenko M V, Lee J S et al. Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as surface ligands[J]. Journal of the American Chemical Society, 133, 10612-10620(2011).
[43] Liu Y, Gibbs M, Perkins C L et al. Robust, functional nanocrystal solids by infilling with atomic layer deposition[J]. Nano Letters, 11, 5349-5355(2011).
[44] Liu Y, Tolentino J, Gibbs M et al. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2 V-1 s-1[J]. Nano Letters, 13, 1578-1587(2013).
[45] Giansante C, Infante I. Surface traps in colloidal quantum dots: a combined experimental and theoretical perspective[J]. The Journal of Physical Chemistry Letters, 8, 5209-5215(2017).
[46] Balazs D M, Nugraha M I, Bisri S Z et al. Reducing charge trapping in PbS colloidal quantum dot solids[J]. Applied Physics Letters, 104, 112104(2014).
[47] Chappell H E, Hughes B K, Beard M C et al. Emission quenching in PbSe quantum dot arrays by short-term air exposure[J]. The Journal of Physical Chemistry Letters, 2, 889-893(2011).
[48] Yang X Y, Ren F Q, Wang Y et al. Iodide capped PbS/CdS core-shell quantum dots for efficient long-wavelength near-infrared light-emitting diodes[J]. Scientific Reports, 7, 14741(2017).
[49] Kim S J, Kim W J, Sahoo Y et al. Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor[J]. Applied Physics Letters, 92, 031107(2008).
[50] Konstantatos G, Sargent E H. PbS colloidal quantum dot photoconductive photodetectors: transport, traps, and gain[J]. Applied Physics Letters, 91, 173505(2007).
[51] Choi H, Ko J H, Kim Y H et al. Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability[J]. Journal of the American Chemical Society, 135, 5278-5281(2013).
[52] Hughes B K, Ruddy D A, Blackburn J L et al. Control of PbSe quantum dot surface chemistry and photophysics using an alkylselenide ligand[J]. ACS Nano, 6, 5498-5506(2012).
[53] Böhm M L, Jellicoe T C, Rivett J P H et al. Size and energy level tuning of quantum dot solids via a hybrid ligand complex[J]. The Journal of Physical Chemistry Letters, 6, 3510-3514(2015).
[54] Soreni-Harari M, Yaacobi-Gross N, Steiner D et al. Tuning energetic levels in nanocrystal quantum dots through surface manipulations[J]. Nano Letters, 8, 678-684(2008).
[55] Munro A M, Zacher B, Graham A et al. Photoemission spectroscopy of tethered CdSe nanocrystals: shifts in ionization potential and local vacuum level as a function of nanocrystal capping ligand[J]. ACS Applied Materials & Interfaces, 2, 863-869(2010).
[56] Grimaldi G, van den Brom M J, du Fossé I et al. Engineering the band alignment in QD heterojunction films via ligand exchange[J]. The Journal of Physical Chemistry C, 123, 29599-29608(2019).
[57] Brown P R, Kim D, Lunt R R et al. Energy level modification in lead sulfide quantum dot thin films through ligand exchange[J]. ACS Nano, 8, 5863-5872(2014).
[58] Crisp R W, Kroupa D M, Marshall A R et al. Metal halide solid-state surface treatment for high efficiency PbS and PbSe QD solar cells[J]. Scientific Reports, 5, 9945(2015).
[59] Reiss P, Protiere M, Li L. Core/Shell semiconductor nanocrystals[J]. Small, 5, 154-168(2009).
[60] Pietryga J M, Werder D J, Williams D J et al. Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission[J]. Journal of the American Chemical Society, 130, 4879-4885(2008).
[61] Zaiats G, Shapiro A, Yanover D et al. Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots[J]. The Journal of Physical Chemistry Letters, 6, 2444-2448(2015).
[62] Zhang Y, Dai Q Q, Li X B et al. PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence[J]. Langmuir, 27, 9583-9587(2011).
[63] Zhang Y, Dai Q Q, Li X B et al. Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals[J]. Journal of Nanoparticle Research, 13, 3721-3729(2011).
[64] Sashchiuk A, Langof L, Chaim R et al. Synthesis and characterization of PbSe and PbSe/PbS core-shell colloidal nanocrystals[J]. Journal of Crystal Growth, 240, 431-438(2002).
[65] Yanover D, Vaxenburg R, Tilchin J et al. Significance of small-sized PbSe/PbS core/shell colloidal quantum dots for optoelectronic applications[J]. The Journal of Physical Chemistry C, 118, 17001-17009(2014).
[66] Rubin-Brusilovski A, Jang Y, Shapiro A et al. Influence of interfacial strain on optical properties of PbSe/PbS colloidal quantum dots[J]. Chemistry of Materials, 28, 9056-9063(2016).
[67] Dai Q Q, Wang Y N, Zhang Y et al. Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure[J]. Langmuir, 25, 12320-12324(2009).
[68] Shan J, Veggel F C J M V, Raudsepp M et al. Highly photo-stable type-I PbSe/SnSe and PbSe/SnS colloidal core/shell quantum dots[J]. TechConnect Briefs, 3, 125-128(2006).
[69] Senthil A, Reymatias M V, Alas G J et al. Synthesis and characterization of near-infrared PbSe/SnS colloidal core-shell quantum dots[J]. Proceedings of SPIE, 11255, 1125508(2020).
[70] Zhang Y, Dai Q Q, Li X B et al. Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission[J]. Nanoscale Research Letters, 5, 1279-1283(2010).
[71] Zaiats G, Yanover D, Vaxenburg R et al. PbSe/CdSe thin-shell colloidal quantum dots[J]. Zeitschrift Für Physikalische Chemie, 229, 3-21(2014).
[72] Hanson C J, Hartmann N F, Singh A et al. Giant PbSe/CdSe/CdSe quantum dots: crystal-structure-defined ultrastable near-infrared photoluminescence from single nanocrystals[J]. Journal of the American Chemical Society, 139, 11081-11088(2017).
[73] Schaller R D, Petruska M A, Klimov V I. Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals[J]. The Journal of Physical Chemistry B, 107, 13765-13768(2003).
[74] Klimov V I, Ivanov S A, Nanda J et al. Single-exciton optical gain in semiconductor nanocrystals[J]. Nature, 447, 441-446(2007).
[75] Cirloganu C M, Padilha L A, Lin Q L et al. Enhanced carrier multiplication in engineered quasi-type-Ⅱ quantum dots[J]. Nature Communications, 5, 4148(2014).
[76] Lystrom L, Tamukong P, Mihaylov D et al. Phonon-driven energy relaxation in PbS/CdS and PbSe/CdSe core/shell quantum dots[J]. The Journal of Physical Chemistry Letters, 11, 4269-4278(2020).
[77] Semonin O E, Luther J M, Beard M C. Quantum dots for next-generation photovoltaics[J]. Materials Today, 15, 508-515(2012).
[78] Weidman M C, Yager K G, Tisdale W A. Interparticle spacing and structural ordering in superlattice PbS nanocrystal solids undergoing ligand exchange[J]. Chemistry of Materials, 27, 474-482(2015).
[79] Zhang Z L, Yang J F, Wen X M et al. Effect of halide treatments on PbSe quantum dot thin films: stability, hot carrier lifetime and application to photovoltaics[J]. The Journal of Physical Chemistry C, 119, 24149-24155(2015).
[80] Zhang J B, Gao J B, Church C P et al. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere[J]. Nano Letters, 14, 6010-6015(2014).
[81] Ahmad W, He J G, Liu Z T et al. Lead selenide (PbSe) colloidal quantum dot solar cells with >10% efficiency[J]. Advanced Materials, 31, 1900593(2019).
[82] Liu S S, Xiong K, Wang K et al. Efficiently passivated PbSe quantum dot solids for infrared photovoltaics[J]. ACS Nano, 15, 3376-3386(2021).
[83] Etgar L, Yanover D, Čapek R K et al. Core/shell PbSe/PbS QDs TiO2 heterojunction solar cell[J]. Advanced Functional Materials, 23, 2736-2741(2013).
[84] Choi H, Song J H, Jang J et al. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control[J]. Nanoscale, 7, 17473-17481(2015).
[85] Wang P, Wang T Y, Wang H L et al. Based on graphene electrodes PbSe/CdSe core-shell quantum dots battery[J]. Applied Mechanics and Materials, 737, 88-91(2015).
[86] Wang T Y, Wang P, Wang H L et al. Solar cells of the inorganic materials based on PbSe/CdSe core/shell nanocrystals[J]. Applied Mechanics and Materials, 737, 119-122(2015).
[87] Kim S, Marshall A R, Kroupa D M et al. Air-stable and efficient PbSe quantum-dot solar cells based upon ZnSe to PbSe cation-exchanged quantum dots[J]. ACS Nano, 9, 8157-8164(2015).
[88] Zhang Y H, Ding C, Wu G H et al. Air stable PbSe colloidal quantum dot heterojunction solar cells: ligand-dependent exciton dissociation, recombination, photovoltaic property, and stability[J]. The Journal of Physical Chemistry C, 120, 28509-28518(2016).
[89] Chen Z H, Zhang Z L, Yang J F et al. Improving carrier extraction in a PbSe quantum dot solar cell by introducing a solution-processed antimony-doped SnO2 buffer layer[J]. Journal of Materials Chemistry C, 6, 9861-9866(2018).
[90] Hu L, Zhang Z L, Patterson R J et al. PbSe quantum dot passivated via mixed halide perovskite nanocrystals for solar cells with over 9% efficiency[J]. Solar RRL, 2, 1800234(2018).
[91] Hu L, Geng X, Singh S et al. Synergistic effect of electron transport layer and colloidal quantum dot solid enable PbSe quantum dot solar cell achieving over 10 % efficiency[J]. Nano Energy, 64, 103922(2019).
[92] Jiang Z Y, Hu W J, Mo C et al. Ultra-sensitive tandem colloidal quantum-dot photodetectors[J]. Nanoscale, 7, 16195-16199(2015).
[93] Zhu T, Zheng L Y, Yao X et al. Ultrasensitive solution-processed broadband PbSe photodetectors through photomultiplication effect[J]. ACS Applied Materials & Interfaces, 11, 9205-9212(2019).
[94] Peng M F, Liu Y, Li F et al. Room-temperature direct synthesis of PbSe quantum dot inks for high-detectivity near-infrared photodetectors[J]. ACS Applied Materials & Interfaces, 13, 51198-51204(2021).
[95] Gong X W, Yang Z Y, Walters G et al. Highly efficient quantum dot near-infrared light-emitting diodes[J]. Nature Photonics, 10, 253-257(2016).
[96] Sun L F, Choi J J, Stachnik D et al. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control[J]. Nature Nanotechnology, 7, 369-373(2012).
[97] Zeng F J, Tan Y Q, Zhang X M et al. Synthesis of Sn-doped CsPbBr3 quantum dot and research on its photoelectric properties[J]. Acta Optica Sinica, 41, 0416001(2021).
[98] Kigel A, Brumer M, Sashchiuk A et al. Synthesis, characterization and the use of PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystals as saturable absorbers in passively switched near infra-red lasers[J]. Proceedings of SPIE, 5929, 59290F(2005).