• Acta Optica Sinica
  • Vol. 43, Issue 19, 1914002 (2023)
Weijing Zhao1,2, Yao Li1,2, Richang Dong3, and Rong Wei1,2,*
Author Affiliations
  • 1Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai 200120, China
  • show less
    DOI: 10.3788/AOS230611 Cite this Article Set citation alerts
    Weijing Zhao, Yao Li, Richang Dong, Rong Wei. Laser Frequency Shift and Stabilization of Atomic Fountain Based on Electro-Optic Modulation[J]. Acta Optica Sinica, 2023, 43(19): 1914002 Copy Citation Text show less
    References

    [1] Riehle F[M]. Frequency standards: basic and applications(2004).

    [2] Audoin C, Vanier J. Atomic frequency standards and clocks[J]. Journal of Physics E: Scientific Instruments, 9, 697-720(1976).

    [3] Zhang H, Ruan J, Liu D D et al. Development and preliminary operation of 87Rb continuously running atomic fountain clock at NTSC[J]. IEEE Transactions on Instrumentation and Measurement, 71, 1008312(2022).

    [4] Hachisu H, Petit G, Nakagawa F et al. SI-traceable measurement of an optical frequency at the low 10-16 level without a local primary standard[J]. Optics Express, 25, 8511-8523(2017).

    [5] Guéna J, Abgrall M, Clairon A et al. Contributing to TAI with a secondary representation of the SI second[J]. Metrologia, 51, 108-120(2014).

    [7] McGrew W F, Zhang X, Fasano R J et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 564, 87-90(2018).

    [8] Huang Y, Zhang B L, Zeng M Y et al. Liquid-nitrogen-cooled Ca+ optical clock with systematic uncertainty of 3×10-18[J]. Physical Review Applied, 17, 034041(2022).

    [9] Bothwell T, Kennedy C J, Aeppli A et al. Resolving the gravitational redshift across a millimetre-scale atomic sample[J]. Nature, 602, 420-424(2022).

    [10] Lu X T, Chang H. Progress of optical lattice atomic clocks[J]. Acta Optica Sinica, 42, 0327004(2022).

    [11] Bize S. The unit of time: present and future directions[J]. Comptes Rendus Physique, 20, 153-168(2019).

    [12] Jin W, Yang Q F, Chang L et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators[J]. Nature Photonics, 15, 346-353(2021).

    [13] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 7, 868-874(2013).

    [14] Cartaleva S S, Gateva S V. Mode selection and frequency stabilization in lasers[J]. Progress in Quantum Electronics, 18, 275-375(1994).

    [15] Metcalf H J, Straten P V D[M]. Laser cooling and trapping, 37-40(1999).

    [16] Ji J W, Cheng H N, Zhang Z et al. Automatic laser frequency stabilization system for transportable 87Rb fountain clock[J]. Acta Optica Sinica, 40, 2214002(2020).

    [17] Chebotayev V. Supernarrow saturated absorption resonances[J]. Physics Reports, 119, 75-116(1985).

    [18] Brazhnikov D, Abdel Hafiz M, Coget G et al. Ultrahigh-contrast saturated-absorption resonance to enhance stability of CPT atom clocks[C], 278-281(2017).

    [19] Liu T, Yan S B, Li L P et al. Frequency stabilization of laser diode via modulation transfer spectrum in cesium vapor cell[J]. Acta Photonica Sinica, 32, 5-8(2003).

    [20] Chen S Z, Liu Q, Shen Y et al. Study on modulation transfer spectroscopy of Rb atoms[C], 5830-5834(2017).

    [21] Hong Y, Hou X, Chen D J et al. Research on frequency stabilization technology of modulation transfer spectroscopy based on Rb87[J]. Chinese Journal of Lasers, 48, 2101003(2021).

    [22] Black E D. An introduction to Pound-Drever-Hall laser frequency stabilization[J]. American Journal of Physics, 69, 79-87(2001).

    [23] Idjadi M H, Aflatouni F. Integrated Pound-Drever-Hall laser stabilization system in silicon[J]. Nature Communications, 8, 1209(2017).

    [24] Gillot J, Tetsing-Talla S F, Denis S et al. Digital control of residual amplitude modulation at the 10-7 level for ultra-stable lasers[J]. Optics Express, 30, 35179-35188(2022).

    [25] Wang Q A, Zhang N, Guang W et al. Precision measurements of the ground-state hyperfine splitting of 85Rb using an atomic fountain clock[J]. Physical Review A, 100, 022510(2019).

    [26] Du Y B, Wei R, Dong R C et al. Recent improvements on the atomic fountain clock at SIOM[J]. Chinese Physics B, 24, 070601(2015).

    [27] Ji Q C, Dong R C, Wang Q et al. Design of compact 85Rb fountain optical path based on profile gridded platform[J]. Acta Optica Sinica, 40, 1802001(2020).

    Weijing Zhao, Yao Li, Richang Dong, Rong Wei. Laser Frequency Shift and Stabilization of Atomic Fountain Based on Electro-Optic Modulation[J]. Acta Optica Sinica, 2023, 43(19): 1914002
    Download Citation