• Infrared and Laser Engineering
  • Vol. 52, Issue 7, 20230338 (2023)
Rong Gao, Xianglong Mao*, Jinpeng Li, Zhichen Xu, and Yongjun Xie
Author Affiliations
  • Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
  • show less
    DOI: 10.3788/IRLA20230338 Cite this Article
    Rong Gao, Xianglong Mao, Jinpeng Li, Zhichen Xu, Yongjun Xie. Freeform off-axis four-mirror all-aluminum infrared detection system (invited)[J]. Infrared and Laser Engineering, 2023, 52(7): 20230338 Copy Citation Text show less
    Design concept of the four mirror optical system
    Fig. 1. Design concept of the four mirror optical system
    Layout of the optical system
    Fig. 2. Layout of the optical system
    Ray footprint of each mirror M1-M4 (color for each field)
    Fig. 3. Ray footprint of each mirror M1-M4 (color for each field)
    Residual sag distribution 3D diagram of each mirror after removing the best-fit sphere
    Fig. 4. Residual sag distribution 3D diagram of each mirror after removing the best-fit sphere
    Spot diagram of the optical system
    Fig. 5. Spot diagram of the optical system
    Full field RMS geometric spot radius distribution
    Fig. 6. Full field RMS geometric spot radius distribution
    Full field RMS wavefront error distribution
    Fig. 7. Full field RMS wavefront error distribution
    MTF curves of the optical system
    Fig. 8. MTF curves of the optical system
    Distorted mesh of the optical system
    Fig. 9. Distorted mesh of the optical system
    Relative illuminance along Y direction
    Fig. 10. Relative illuminance along Y direction
    Relative illuminance along X direction
    Fig. 11. Relative illuminance along X direction
    3D model of system mechanical structure
    Fig. 12. 3D model of system mechanical structure
    Integrated flexible 3D structure of M2
    Fig. 13. Integrated flexible 3D structure of M2
    Boundary conditions of the finite element model
    Fig. 14. Boundary conditions of the finite element model
    The deformation datas of the mirrors and focal plane are imported into the optical software
    Fig. 15. The deformation datas of the mirrors and focal plane are imported into the optical software
    Full field RMS geometric spot radius distribution
    Fig. 16. Full field RMS geometric spot radius distribution
    Wavefront testing optical path (a) and test photographic (b) of the system
    Fig. 17. Wavefront testing optical path (a) and test photographic (b) of the system
    Wavefront aberration of typical field of view
    Fig. 18. Wavefront aberration of typical field of view
    ParameterSpecifications
    Resolution/pixel640×512
    Pixel size/μm225×25
    Spectral band/μm7.7-10.0
    Entrance pupil diameter/mm73
    F-number 2
    Field of view/(°)6.25×5.0
    Distortion<5%
    RMS spot size/μm<50×50
    RMS wavefront error<1λ@632.8 nm
    Package size/mm3<150×250×300
    Working temperature/℃10-30
    Table 1. Specification of the optical system
    TermXY polynomial Coefficient of M1Coefficient of M2Coefficient of M3Coefficient of M4
    1X0Y1 −1.91590e-02−4.85671e-021.04008e-01−9.21760e-02
    2X2Y0 −6.09199e-041.48764e-033.00154e-021.86876e-04
    3X0Y2 −7.87246e-046.40174e-042.82810e-02−2.30088e-04
    4X2Y1 −8.05246e-06−8.45861e-063.34959e-05−3.48285e-06
    5X0Y3 −6.55433e-06−1.09920e-052.33983e-06−3.22347e-06
    6X4Y0 2.31375e-08−8.36654e-099.54513e-067.97118e-09
    7X2Y2 2.95744e-08−1.37912e-072.41580e-05−1.39353e-08
    8X0Y4 1.02931e-08−1.43957e-071.29804e-05−1.63718e-08
    9X4Y1 −2.87921e-10−8.54897e-10−3.81025e-07−2.18160e-10
    10X2Y3 −4.62580e-10−3.00746e-093.11828e-09−5.13363e-10
    11X0Y5 −1.89183e-10−2.32407e-09−3.87337e-08−2.60893e-10
    12X6Y0 1.08579e-123.93228e-134.29815e-096.11019e-13
    13X4Y25.39421e-12−7.60172e-126.35325e-08−2.01506e-12
    14X2Y4 5.93096e-12−3.12901e-113.73110e-08−5.25985e-12
    15X0Y6 1.89380e-12−2.73598e-111.60445e-08−2.60015e-12
    16X6Y1 −3.74645e-14−1.50798e-133.80074e-09−5.13163e-14
    17X4Y3 −7.57945e-14−2.30257e-132.12275e-10−1.60806e-13
    18X2Y5 −6.16321e-14−3.77989e-131.84473e-10−1.35982e-13
    19X0Y7 −1.68419e-14−2.20673e-133.74348e-10−4.21283e-14
    Table 2. XYpolynomial coefficients of M1-M4
    No.TermValueNo.TermValue
    1Detector position compensation±2.00 mm4Distance between M3 and M4±0.05 mm
    2Distance between M1 and M2±0.05 mm5X-decenter of M1 ±0.02 mm
    3Distance between M2 and M3±0.05 mm6Y-decenter of M1 ±0.02 mm
    7X-tilt of M1 ±0.017°16Y-decenter of M3 ±0.02 mm
    8Y-tilt of M1 ±0.017°17X-tilt of M3 ±0.017°
    9Z-tilt of M1 ±0.017°18Y-tilt of M3 ±0.017°
    10X-decenter of M2 ±0.02 mm19Z-tilt of M3 ±0.017°
    11Y-decenter of M2 ±0.02 mm20X-decenter of M4 ±0.02 mm
    12X-tilt of M2 ±0.017°21Y-decenter of M4 ±0.02 mm
    13Y-tilt of M2 ±0.017°22X-tilt of M4 ±0.017°
    14Z-tilt of M2 ±0.017°23Y-tilt of M4 ±0.017°
    15X-decenter of M3 ±0.02 mm24Z-tilt of M4 ±0.017°
    Table 3. Allocation table for positioning and attitude tolerance of M1-M4
    Density/ kg·m3Thermal expansion coefficient /K Elastic modulus/ N·m−2Poisson's ratioThermal conductivity /W·(m·K)−1
    27102.4E-56.9E100.33154
    Table 4. 6061-T6 material properties
    Rong Gao, Xianglong Mao, Jinpeng Li, Zhichen Xu, Yongjun Xie. Freeform off-axis four-mirror all-aluminum infrared detection system (invited)[J]. Infrared and Laser Engineering, 2023, 52(7): 20230338
    Download Citation