• Nano-Micro Letters
  • Vol. 16, Issue 1, 130 (2024)
Jiajia Qiu1,2,†, Yu Duan1,†, Shaoyuan Li2,†, Huaping Zhao1..., Wenhui Ma2,4,*, Weidong Shi3,** and Yong Lei1,***|Show fewer author(s)
Author Affiliations
  • 1Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693 Ilmenau, Germany
  • 2Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, People’s Republic of China
  • 3School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People’s Republic of China
  • 4School of Science and Technology, Pu’er University, Pu’er 665000, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01341-4 Cite this Article
    Jiajia Qiu, Yu Duan, Shaoyuan Li, Huaping Zhao, Wenhui Ma, Weidong Shi, Yong Lei. Insights into Nano- and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage[J]. Nano-Micro Letters, 2024, 16(1): 130 Copy Citation Text show less
    References

    [1] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    [2] P. Meng, J. Huang, Z. Yang, M. Jiang, Y. Wang et al., Air-stable binary hydrated eutectic electrolytes with unique solvation structure for rechargeable aluminum-ion batteries. Nano-Micro Lett. 15, 188 (2023).

    [3] B. Shi, L. Li, A. Chen, T.-C. Jen, X. Liu et al., Continuous fabrication of Ti3C2Tx MXene-based braided coaxial zinc-ion hybrid supercapacitors with improved performance. Nano-Micro Lett. 14, 34 (2021).

    [4] R. Xu, L. Du, D. Adekoya, G. Zhang, S. Zhang et al., Well-defined nanostructures for electrochemical energy conversion and storage. Adv. Energy Mater. 11, 2001537 (2021).

    [5] M.R. Begley, D.S. Gianola, T.R. Ray, Bridging functional nanocomposites to robust macroscale devices. Science 364, eaav4299 (2019).

    [6] C. Huang, X. Chen, Z. Xue, T. Wang, Effect of structure: a new insight into nanoparticle assemblies from inanimate to animate. Sci. Adv. 6, eaba1321 (2020).

    [7] E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019).

    [8] Y. Lu, G. Zhang, H. Zhou, S. Cao, Y. Zhang et al., Enhanced active sites and stability in nano-MOFs for electrochemical energy storage through dual regulation by tannic acid. Angew. Chem. Int. Ed. 62, e202311075 (2023).

    [9] Y. Kuang, C. Chen, D. Kirsch, L. Hu, Thick electrode batteries: principles, opportunities, and challenges. Adv. Energy Mater. 9, 1901457 (2019).

    [10] Editorials, Nanotechnology for electrochemical energy storage. Nat. Nanotechnol. 18, 1117 (2023).

    [11] E. Pameté, L. Köps, F.A. Kreth, S. Pohlmann, A. Varzi et al., The many deaths of supercapacitors: degradation, aging, and performance fading. Adv. Energy Mater. 13, 2370125 (2023).

    [12] W. Zhang, Y. Liu, Z. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5, eaav7412 (2019).

    [13] W. Chen, K. Yang, M. Luo, D. Zhang, Z. Li et al., Carbonization-free wood electrode with MXene-reconstructed porous structure for all-wood eco-supercapacitors. EcoMat 5, e12271 (2023).

    [14] X.R. Li, H.P. Li, X.Q. Fan, X.L. Shi, J.J. Liang, 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy Mater. 10(14), 1903794 (2020).

    [15] D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 8, 1802386 (2018).

    [16] J. Xue, L. Gao, X. Hu, K. Cao, W. Zhou et al., Stereolithographic 3D printing-based hierarchically cellular lattices for high-performance quasi-solid supercapacitor. Nano-Micro Lett. 11, 46 (2019).

    [17] J. Yang, Q. Cao, X. Tang, J. Du, T. Yu et al., 3D-printed highly stretchable conducting polymer electrodes for flexible supercapacitors. J. Mater. Chem. A 9, 19649–19658 (2021).

    [18] Z. Lei, L. Liu, H. Zhao, F. Liang, S. Chang et al., Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors. Nat. Commun. 11, 299 (2020).

    [19] B. Asbani, G. Buvat, J. Freixas, M. Huvé, D. Troadec et al., Ultra-high areal capacitance and high rate capability RuO2 thin film electrodes for 3D micro-supercapacitors. Energy Storage Mater. 42, 259–267 (2021).

    [20] S. Ni, M. Zhang, C. Li, R. Gao, J. Sheng et al., A 3D framework with Li3N–Li2S solid electrolyte interphase and fast ion transfer channels for a stabilized lithium-metal anode. Adv. Mater. 35, 2209028 (2023).

    [21] S.D. Lacey, D.J. Kirsch, Y. Li, J.T. Morgenstern, B.C. Zarket et al., Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 30, e1705651 (2018).

    [22] X. Fu, Y. Zhou, J. Huang, L. Feng, P. Yu et al., Rethinking the electrode multiscale microstructures: a review on structuring strategies toward battery manufacturing genome. Adv. Energy Mater. 13, 2301385 (2023).

    [23] G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 32, e1907176 (2020).

    [24] X. Fan, C. Deng, H. Gao, B. Jiao, Y. Liu et al., 3D printing of nanowrinkled architectures via laser direct assembly. Sci. Adv. 8, eabn9942 (2022).

    [25] W. Ouyang, X. Xu, W. Lu, N. Zhao, F. Han et al., Ultrafast 3D nanofabrication via digital holography. Nat. Commun. 14, 1716 (2023).

    [26] M.A. Brown, K.M. Zappitelli, L. Singh, R.C. Yuan, M. Bemrose et al., Direct laser writing of 3D electrodes on flexible substrates. Nat. Commun. 14, 3610 (2023).

    [27] H. Zhao, C. Wang, R. Vellacheri, M. Zhou, Y. Xu et al., Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications. Adv. Mater. 26, 7654–7659 (2014).

    [28] C. Liu, E.I. Gillette, X. Chen, A.J. Pearse, A.C. Kozen et al., An all-in-one nanopore battery array. Nat. Nanotechnol. 9, 1031–1039 (2014).

    [29] H. Ning, J.H. Pikul, R. Zhang, X. Li, S. Xu et al., Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc. Natl. Acad. Sci. U.S.A. 112, 6573–6578 (2015).

    [30] X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv. Mater. 27, 6670–6676 (2015).

    [31] K. Qin, E. Liu, J. Li, J. Kang, C. Shi et al., Supercapacitors: free-standing 3D nanoporous duct-like and hierarchical nanoporous graphene films for micron-level flexible solid-state asymmetric supercapacitors. Adv. Energy Mater. 6, 1670107 (2016).

    [32] J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 25, 193–202 (2016).

    [33] C. Chen, Y. Zhang, Y. Li, J. Dai, J. Song et al., All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538–545 (2017).

    [34] J. Kang, J. Kim, S. Lee, S. Wi, C. Kim et al., Breathable carbon-free electrode: black TiO2 with hierarchically ordered porous structure for stable Li–O2 battery. Adv. Energy Mater. 7, 1700814 (2017).

    [35] X. Wang, W. Zeng, L. Hong, W. Xu, H. Yang et al., Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227–235 (2018).

    [36] X. Peng, L. Zhang, Z. Chen, L. Zhong, D. Zhao et al., Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv. Mater. 31, e1900341 (2019).

    [37] X. Lu, Y. Yin, L. Zhang, S. Huang, L. Xi et al., 3D Ag/NiO-Fe2O3/Ag nanomembranes as carbon-free cathode materials for Li–O2 batteries. Energy Storage Mater. 16, 155–162 (2019).

    [38] J. Shang, Q. Huang, L. Wang, Y. Yang, P. Li et al., Soft hybrid scaffold (SHS) strategy for realization of ultrahigh energy density of wearable aqueous supercapacitors. Adv. Mater. 32, e1907088 (2020).

    [39] S.G. Patnaik, J. Shamsudeen Seenath, D. Bourrier, S. Prabhudev, D. Guay et al., Porous RuOxNySz electrodes for microsupercapacitors and microbatteries with enhanced areal performance. ACS Energy Lett. 6, 131–139 (2021).

    [40] P. Zhai, T. Wang, H. Jiang, J. Wan, Y. Wei et al., 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures. Adv. Mater. 33, e2006247 (2021).

    [41] Y. Zhuang, D. Deng, L. Lin, B. Liu, S. Qu et al., Ion-conductive gradient sodiophilic 3D scaffold induced homogeneous sodium deposition for highly stable sodium metal batteries. Nano Energy 97, 107202 (2022).

    [42] X. Li, S. Ling, L. Zeng, H. He, X. Liu et al., Directional freezing assisted 3D printing to solve a flexible battery dilemma: ultrahigh energy/power density and uncompromised mechanical compliance. Adv. Energy Mater. 12, 2200233 (2022).

    [43] J. Ruan, D. Ma, K. Ouyang, S. Shen, M. Yang et al., 3D artificial array interface engineering enabling dendrite-free stable Zn metal anode. Nano-Micro Lett. 15, 37 (2023).

    [44] G. Hyun, M. Park, G. Bae, J.-W. Chung, Y. Ham et al., Unraveling the significance of Li+/e–/O2 phase boundaries with a 3D-patterned Cu electrode for Li–O2 batteries. Adv. Funct. Mater. 33, 2303059 (2023).

    [45] T. Zhang, F. Ran, Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery. Adv. Funct. Mater. 31, 2010041 (2021).

    [46] B. Bounor, B. Asbani, C. Douard, F. Favier, T. Brousse et al., On chip MnO2-based 3D micro-supercapacitors with ultra-high areal energy density. Energy Storage Mater. 38, 520–527 (2021).

    [47] S.J. Yeo, M.J. Oh, P.J. Yoo, Structurally controlled cellular architectures for high-performance ultra-lightweight materials. Adv. Mater. 31, e1803670 (2019).

    [48] W. Li, X. Guo, P. Geng, M. Du, Q. Jing et al., Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li–S battery. Adv. Mater. 33, e2105163 (2021).

    [49] Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

    [50] H. Hamed, S. Yari, J. D’Haen, F.U. Renner, N. Reddy et al., Demystifying charge transport limitations in the porous electrodes of lithium-ion batteries. Adv. Energy Mater. 10, 2002492 (2020).

    [51] S. Li, D. Liu, G. Wang, P. Ma, X. Wang et al., Vertical 3D nanostructures boost efficient hydrogen production coupled with glycerol oxidation under alkaline conditions. Nano-Micro Lett. 15, 189 (2023).

    [52] D. Nepal, S. Kang, K.M. Adstedt, K. Kanhaiya, M.R. Bockstaller et al., Hierarchically structured bioinspired nanocomposites. Nat. Mater. 22, 18–35 (2023).

    [53] C. Qi, F. Jiang, S. Yang, Advanced honeycomb designs for improving mechanical properties: a review. Compos. Part B Eng. 227, 109393 (2021).

    [54] C. Chen, Y. Kuang, S. Zhu, I. Burgert, T. Keplinger et al., Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666 (2020).

    [55] Z. Niu, W. Zhao, B. Wu, H. Wang, W.-F. Lin et al., π learning: a performance-informed framework for microstructural electrode design. Adv. Energy Mater. 13, 2370067 (2023).

    [56] Z. Yao, Y. Lum, A. Johnston, L.M. Mejia-Mendoza, X. Zhou et al., Machine learning for a sustainable energy future. Nat. Rev. Mater. 8, 202–215 (2022).

    [57] Z. Chen, D.L. Danilov, R.-A. Eichel, P.H.L. Notten, Porous electrode modeling and its applications to Li-ion batteries. Adv. Energy Mater. 12, 2201506 (2022).

    [58] D.P. Finegan, I. Squires, A. Dahari, S. Kench, K.L. Jungjohann et al., Machine-learning-driven advanced characterization of battery electrodes. ACS Energy Lett. 7, 4368–4378 (2022).

    [59] L. Snarski, I. Biran, T. Bendikov, I. Pinkas, M.A. Iron et al., Highly conductive robust carbon nanotube networks for strong buckypapers and transparent electrodes. Adv. Funct. Mater. (2023).

    [60] Y. Chao, R. Jalili, Y. Ge, C. Wang, T. Zheng et al., Self-assembly of flexible free-standing 3D porous MoS2-reduced graphene oxide structure for high-performance lithium-ion batteries. Adv. Funct. Mater. 27, 1700234 (2017).

    [61] K. Lu, Z. Hu, J. Ma, H. Ma, L. Dai et al., A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nat. Commun. 8, 527 (2017).

    [62] A. Ferris, S. Garbarino, D. Guay, D. Pech, 3D RuO2 microsupercapacitors with remarkable areal energy. Adv. Mater. 27, 6625–6629 (2015).

    [63] G.V. Alexander, C. Shi, J. O’Neill, E.D. Wachsman, Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture. Nat. Mater. 22, 1136–1143 (2023).

    [64] H. Bian, R. Dong, Q. Shao, S. Wang, M.-F. Yuen et al., Water-enabled crystallization of mesoporous SnO2 as a binder-free electrode for enhanced sodium storage. J. Mater. Chem. A 5, 23967–23975 (2017).

    [65] Y. Katsuyama, N. Haba, H. Kobayashi, K. Iwase, A. Kudo et al., Macro- and nano-porous 3D-hierarchical carbon lattices for extraordinarily high capacitance supercapacitors. Adv. Funct. Mater. 32, 2201544 (2022).

    [66] J. Tao, F. Yang, T. Wu, J. Shi, H.-B. Zhao et al., Thermal insulation, flame retardancy, smoke suppression, and reinforcement of rigid polyurethane foam enabled by incorporating a P/Cu-hybrid silica aerogel. Chem. Eng. J. 461, 142061 (2023).

    [67] C. Yan, Y.-J. Luo, W.-G. Zhang, Z.-F. Zhu, P.-Y. Li et al., Preparation of a novel melamine foam structure and properties. J. Appl. Polym. Sci. 139, e51992 (2022).

    [68] X. Li, F. Chen, B. Zhao, S. Zhang, X. Zheng et al., Ultrafast synthesis of metal-layered hydroxides in a dozen seconds for high-performance aqueous Zn (micro-) battery. Nano-Micro Lett. 15, 32 (2023).

    [69] Y. Ma, L. Wei, Y. Gu, J. Hu, Y. Chen et al., High-performance Li–O2 batteries based on all-graphene backbone. Adv. Funct. Mater. 30, 2007218 (2020).

    [70] X. Yao, Y. Zhao, Three-dimensional porous graphene networks and hybrids for lithium-ion batteries and supercapacitors. Chem 2, 171–200 (2017).

    [71] P. Sun, X. Li, J. Shao, P.V. Braun, High-performance packaged 3D lithium-ion microbatteries fabricated using imprint lithography. Adv. Mater. 33, e2006229 (2021).

    [72] Z. Cai, F. Tang, Y. Yang, S. Xu, C. Xu et al., A multifunctional super-sodiophilic coating on aluminum current collector for high-performance anode-free Na-metal batteries. Nano Energy 116, 108814 (2023).

    [73] L. Ren, Y. Li, N. Zhang, Z. Li, X. Lin et al., Nanostructuring of Mg-based hydrogen storage materials: recent advances for promoting key applications. Nano-Micro Lett. 15, 93 (2023).

    [74] I. Hussain, C. Lamiel, S. Sahoo, M.S. Javed, M. Ahmad et al., Animal- and human-inspired nanostructures as supercapacitor electrode materials: a review. Nano-Micro Lett. 14, 199 (2022).

    [75] Z. Pan, Y. Qian, Y. Li, X. Xie, N. Lin et al., Novel bilayer-shelled N, O-doped hollow porous carbon microspheres as high performance anode for potassium-ion hybrid capacitors. Nano-Micro Lett. 15, 151 (2023).

    [76] Y. Wang, S. Sun, X. Wu, H. Liang, W. Zhang, Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Lett. 15, 78 (2023).

    [77] H.D. Abruña, Y. Kiya, J.C. Henderson, Batteries and electrochemical capacitors. Phys. Today 61, 43–47 (2008).

    [78] J. Liu, J. Wang, C. Xu, H. Jiang, C. Li et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 (2017).

    [79] S. Seenivasan, K.I. Shim, C. Lim, T. Kavinkumar, A.T. Sivagurunathan et al., Boosting pseudocapacitive behavior of supercapattery electrodes by incorporating a Schottky junction for ultrahigh energy density. Nano-Micro Lett. 15, 62 (2023).

    [80] C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei et al., Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2020).

    [81] J. Qiu, H. Zhao, Y. Lei, Emerging smart design of electrodes for micro-supercapacitors: a review. SmartMat 3, 447–473 (2022).

    [82] X. Chen, W. Li, G. Zhang, F. Sun, Q. Jing et al., Highly stable and activated Cerium-based MOFs superstructures for ultrahigh selective uranium (VI) capture from simulated seawater. Mater. Today Chem. 23, 100705 (2022).

    [83] F. Wang, J.Y. Cheong, J. Lee, J. Ahn, G. Duan et al., Pyrolysis of enzymolysis-treated wood: hierarchically assembled porous carbon electrode for advanced energy storage devices. Adv. Funct. Mater. 31, 2101077 (2021).

    [84] K. Liu, R. Mo, W. Dong, W. Zhao, F. Huang, Nature-derived, structure and function integrated ultra-thick carbon electrode for high-performance supercapacitors. J. Mater. Chem. A 8, 20072–20081 (2020).

    [85] J. Xu, J. Lei, N. Ming, C. Zhang, K. Huo, Rational design of wood-structured thick electrode for electrochemical energy storage. Adv. Funct. Mater. 32, 2204426 (2022).

    [86] C. Guan, J. Liu, Y. Wang, L. Mao, Z. Fan et al., Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 9, 5198–5207 (2015).

    [87] Z. Liang, Y. Wang, B. Pei, S.-B. Son, M. Nguyen et al., 3D-integrated, multi-functional carbon fibers for stable, high-areal-capacity batteries. Adv. Energy Mater. 13, 2301295 (2023).

    [88] X. Wan, T. Mu, G. Yin, Intrinsic self-healing chemistry for next-generation flexible energy storage devices. Nano-Micro Lett. 15, 99 (2023).

    [89] H. He, J. Lian, C. Chen, Q. Xiong, C.C. Li et al., Enabling multi-chemisorption sites on carbon nanofibers cathodes by an In-situ exfoliation strategy for high-performance Zn-ion hybrid capacitors. Nano-Micro Lett. 14, 106 (2022).

    [90] J. Ahn, H. Han, J.-H. Ha, Y. Jeong, Y. Jung et al., Micro-/nanohierarchical structures physically engineered on surfaces: analysis and perspective. Adv. Mater. (2023).

    [91] M. Li, S. Zhou, L. Cheng, F. Mo, L. Chen et al., 3D printed supercapacitor: techniques, materials, designs, and applications. Adv. Funct. Mater. 33, 2208034 (2023).

    [92] D. Lin, S. Chandrasekaran, J.-B. Forien, X. Xue, A. Pinongcos et al., 3D-printed graded electrode with ultrahigh MnO2 loading for non-aqueous electrochemical energy storage. Adv. Energy Mater. 13, 2300408 (2023).

    [93] M. Sha, H. Zhao, Y. Lei, Updated insights into 3D architecture electrodes for micropower sources. Adv. Mater. 33, e2103304 (2021).

    [94] A. Varzi, L. Mattarozzi, S. Cattarin, P. Guerriero, S. Passerini, 3D porous Cu–Zn alloys as alternative anode materials for Li-ion batteries with superior low T performance. Adv. Energy Mater. 8, 1701706 (2018).

    [95] T. Wang, X. Tian, L. Li, L. Lu, S. Hou et al., 3D printing-based cellular microelectrodes for high-performance asymmetric quasi-solid-state micro-pseudocapacitors. J. Mater. Chem. A 8, 1749–1756 (2020).

    [96] Z. Qi, J. Ye, W. Chen, J. Biener, E.B. Duoss et al., Compressible electrodes: 3D-printed, superelastic polypyrrole–graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv. Mater. Technol. 3, 1800053 (2018).

    [97] X. Tang, H. Zhou, Z. Cai, D. Cheng, P. He et al., Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 12, 3502–3511 (2018).

    [98] Y. Gao, Y. Lin, J. Chen, Q. Lin, Y. Wu et al., Three-dimensional nanotube electrode arrays for hierarchical tubular structured high-performance pseudocapacitors. Nanoscale 8, 13280–13287 (2016).

    [99] Y. Gao, Y. Lin, Z. Peng, Q. Zhou, Z. Fan, Accelerating ion diffusion with unique three-dimensionally interconnected nanopores for self-membrane high-performance pseudocapacitors. Nanoscale 9, 18311–18317 (2017).

    [100] Y. Jiang, Z. Zhang, D. Chen, J. Du, Y. Yang et al., Vertical growth of 2D covalent organic framework nanoplatelets on a macroporous scaffold for high-performance electrodes. Adv. Mater. 34, e2204250 (2022).

    [101] B. Zhang, X. Li, J. Zou, F. Kim, MnCO3 on graphene porous framework via diffusion-driven layer-by-layer assembly for high-performance pseudocapacitor. ACS Appl. Mater. Interfaces 12, 47695–47703 (2020).

    [102] M.F. El-Kady, M. Ihns, M. Li, J.Y. Hwang, M.F. Mousavi et al., Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl. Acad. Sci. U.S.A. 112, 4233–4238 (2015).

    [103] J. Du, Q. Cao, X. Tang, X. Xu, X. Long et al., 3D printing-assisted gyroidal graphite foam for advanced supercapacitors. Chem. Eng. J. 416, 127885 (2021).

    [104] X. Chang, M.F. El-Kady, A. Huang, C.-W. Lin, S. Aguilar et al., 3D graphene network with covalently grafted aniline tetramer for ultralong-life supercapacitors. Adv. Funct. Mater. 31, 2102397 (2021).

    [105] J. Li, M. Zhu, Z. An, Z. Wang, M. Toda et al., Constructing in-chip micro-supercapacitors of 3D graphene nanowall/ruthenium oxides electrode through silicon-based microfabrication technique. J. Power. Sources 401, 204–212 (2018).

    [106] Y.-Q. Li, X.-M. Shi, X.-Y. Lang, Z. Wen, J.-C. Li et al., Remarkable improvements in volumetric energy and power of 3D MnO2 microsupercapacitors by tuning crystallographic structures. Adv. Funct. Mater. 26, 1830–1839 (2016).

    [107] F. Grote, Y. Lei, A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO2. Nano Energy 10, 63–70 (2014).

    [108] L. Li, J. Meng, X. Bao, Y. Huang, X.-P. Yan et al., Direct-ink-write 3D printing of programmable micro-supercapacitors from MXene-regulating conducting polymer inks. Adv. Energy Mater. 13, 2203683 (2023).

    [109] M.-Y. Zhang, Y. Song, D. Guo, D. Yang, X. Sun et al., Strongly coupled polypyrrole/molybdenum oxide hybrid films via electrochemical layer-by-layer assembly for pseudocapacitors. J. Mater. Chem. A 7, 9815–9821 (2019).

    [110] J. Gong, J.-C. Li, J. Yang, S. Zhao, Z. Yang et al., High-performance flexible in-plane micro-supercapacitors based on vertically aligned CuSe@Ni(OH)2 hybrid nanosheet films. ACS Appl. Mater. Interfaces 10, 38341–38349 (2018).

    [111] T.M. Dinh, A. Achour, S. Vizireanu, G. Dinescu, L. Nistor et al., Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors. Nano Energy 10, 288–294 (2014).

    [112] J. Li, M. Zhu, Z. Wang, T. Ono, Engineering micro-supercapacitors of graphene nanowalls/ni heterostructure based on microfabrication technology. Appl. Phys. Lett. 109, 153901 (2016).

    [113] C. Kim, J. Sul, J.H. Moon, Semiconductor process fabrication of multiscale porous carbon thin films for energy storage devices. Energy Storage Mater. 57, 308–315 (2023).

    [114] X. Yu, N. Li, S. Zhang, C. Liu, L. Chen et al., Ultra-thick 3D graphene frameworks with hierarchical pores for high-performance flexible micro-supercapacitors. J. Power. Sources 478, 229075 (2020).

    [115] S. Sollami Delekta, M.M. Laurila, M. Mäntysalo, J. Li, Drying-mediated self-assembly of graphene for inkjet printing of high-rate micro-supercapacitors. Nano-Micro Lett. 12, 40 (2020).

    [116] B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian et al., Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2019).

    [117] T. Lv, G. Zhu, S. Dong, Q. Kong, Y. Peng et al., Co-intercalation of dual charge carriers in metal-ion-confining layered vanadium oxide nanobelts for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202216089 (2023).

    [118] Y. Su, J. Hu, G. Yuan, G. Zhang, W. Wei et al., Regulating intramolecular electron transfer of nickel-based coordinations through ligand engineering for aqueous batteries. Adv. Mater. 35, e2307003 (2023).

    [119] S. Shi, Y. Li, B.-N. Ngo-Dinh, J. Markmann, J. Weissmüller, Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science 371, 1026–1033 (2021).

    [120] Y. Kuang, C. Chen, G. Pastel, Y. Li, J. Song et al., Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater. 8, 1802398 (2018).

    [121] Y.-Q. Li, H. Shi, S.-B. Wang, Y.-T. Zhou, Z. Wen et al., Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries. Nat. Commun. 10, 4292 (2019).

    [122] D. Feng, H. Yang, X. Guo, 3-dimensional hierarchically porous ZnFe2O4/C composites with stable performance as anode materials for Li-ion batteries. Chem. Eng. J. 355, 687–696 (2019).

    [123] Y. Wang, S. Luo, M. Chen, L. Wu, Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high-performance Li-ion battery. Adv. Funct. Mater. 30, 2000373 (2020).

    [124] T. Jiang, F. Bu, X. Feng, I. Shakir, G. Hao et al., Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 11, 5140–5147 (2017).

    [125] H. Zhang, P. Chen, H. Xia, G. Xu, Y. Wang et al., An integrated self-healing anode assembled via dynamic encapsulation of liquid metal with a 3D Ti3C2Tx network for enhanced lithium storage. Energy Environ. Sci. 15, 5240–5250 (2022).

    [126] X. Cheng, R. Shao, D. Li, H. Yang, Y. Wu et al., A self-healing volume variation three-dimensional continuous bulk porous bismuth for ultrafast sodium storage. Adv. Funct. Mater. 31, 2011264 (2021).

    [127] H. Dai, X. Zhao, H. Xu, J. Yang, J. Zhou et al., Design of vertically aligned two-dimensional heterostructures of rigid Ti3C2TX MXene and pliable vanadium pentoxide for efficient lithium ion storage. ACS Nano 16, 5556–5565 (2022).

    [128] N. Cheng, W. Zhou, J. Liu, Z. Liu, B. Lu, Reversible oxygen-rich functional groups grafted 3D honeycomb-like carbon anode for super-long potassium ion batteries. Nano-Micro Lett. 14, 146 (2022).

    [129] Z. Lv, M. Yue, M. Ling, H. Zhang, J. Yan et al., Controllable design coupled with finite element analysis of low-tortuosity electrode architecture for advanced sodium-ion batteries with ultra-high mass loading. Adv. Energy Mater. 11, 2003725 (2021).

    [130] S. Tu, Z. Lu, M. Zheng, Z. Chen, X. Wang et al., Single-layer-particle electrode design for practical fast-charging lithium-ion batteries. Adv. Mater. 34, e2202892 (2022).

    [131] Y. Ham, N.J. Fritz, G. Hyun, Y.B. Lee, J.S. Nam et al., 3D periodic polyimide nano-networks for ultrahigh-rate and sustainable energy storage. Energy Environ. Sci. 14, 5894–5902 (2021).

    [132] J.H. Pikul, H. Gang Zhang, J. Cho, P.V. Braun, W.P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013).

    [133] Z. Hao, L. Xu, Q. Liu, W. Yang, X. Liao et al., On-chip Ni–Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 microelectrode with ultrafast ion and electron transport kinetics. Adv. Funct. Mater. 29, 1808470 (2019).

    [134] W.C. Records, S. Wei, A.M. Belcher, Virus-templated nickel phosphide nanofoams as additive-free, thin-film Li-ion microbattery anodes. Small 15, e1903166 (2019).

    [135] J.H. Pikul, J. Liu, P.V. Braun, W.P. King, Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries. J. Power. Sources 315, 308–315 (2016).

    [136] W. Yang, L. Xu, W. Luo, M. Huang, K. Fu et al., Rechargeable zinc-ammonium hybrid microbattery with ultrahigh energy and power density. Matter 6, 3006–3020 (2023).

    [137] M. Jiang, C. Fu, P. Meng, J. Ren, J. Wang et al., Challenges and strategies of low-cost aluminum anodes for high-performance Al-based batteries. Adv. Mater. 34, e2102026 (2022).

    [138] Y. Wang, T. Guo, J. Yin, Z. Tian, Y. Ma et al., Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv. Mater. 34, e2106937 (2022).

    [139] Y. Zhang, S. Liu, Y. Ji, J. Ma, H. Yu, Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30, e1706310 (2018).

    [140] H. Song, J. Su, C. Wang, Hybrid solid electrolyte interphases enabled ultralong life Ca-metal batteries working at room temperature. Adv. Mater. 33, e2006141 (2021).

    [141] K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao et al., Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 44, 699–728 (2015).

    [142] J. Noh, J. Tan, D.R. Yadav, P. Wu, K.Y. Xie et al., Understanding of lithium insertion into 3D porous carbon scaffolds with hybridized lithiophobic and lithiophilic surfaces by In-operando study. Nano Lett. 20, 3681–3687 (2020).

    [143] C. Bao, B. Wang, P. Liu, H. Wu, Y. Zhou et al., Solid electrolyte interphases on sodium metal anodes. Adv. Funct. Mater. 30, 2004891 (2020).

    [144] P. Liu, D. Mitlin, Emerging potassium metal anodes: perspectives on control of the electrochemical interfaces. Acc. Chem. Res. 53, 1161–1175 (2020).

    [145] H. Wang, J. Dong, Q. Guo, W. Xu, H. Zhang et al., Highly stable potassium metal batteries enabled by regulating surface chemistry in ether electrolyte. Energy Storage Mater. 42, 526–532 (2021).

    [146] D.-H. Liu, Z. Bai, M. Li, A. Yu, D. Luo et al., Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chem. Soc. Rev. 49, 5407–5445 (2020).

    [147] X. Zhang, Q. Xiang, S. Tang, A. Wang, X. Liu et al., Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface. Nano Lett. 20, 2871–2878 (2020).

    [148] X. Wang, R. Kerr, F. Chen, N. Goujon, J.M. Pringle et al., Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32, e1905219 (2020).

    [149] J. Chen, X. Xu, Q. He, Y. Ma, Advanced current collectors for alkali metal anodes. Chem. Res. Chin. Univ. 36, 386–401 (2020).

    [150] C. Xu, J. Qiu, Y. Dong, Y. Li, Y. Shen et al., Dual-functional electrode promoting dendrite-free and CO2 utilization enabled high-reversible symmetric Na-CO2 batteries. Energy Environ. Mater. (2023).

    [151] J. Chang, J. Shang, Y. Sun, L.K. Ono, D. Wang et al., Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat. Commun. 9, 4480 (2018).

    [152] L.-L. Lu, Y. Zhang, Z. Pan, H.-B. Yao, F. Zhou et al., Lithiophilic Cu–Ni core–shell nanowire network as a stable host for improving lithium anode performance. Energy Storage Mater. 9, 31–38 (2017).

    [153] X. Zhu, H. Cheng, S. Lyu, J. Huang, J. Gu et al., High-energy-heavy-ion engineering low-tortuosity and high-porosity 3D metallic electrodes for long-life lithium anodes. Adv. Energy Mater. 13, 2300129 (2023).

    [154] S.-S. Chi, Q. Wang, B. Han, C. Luo, Y. Jiang et al., Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition. Nano Lett. 20, 2724–2732 (2020).

    [155] G.J.H. Lim, Z. Lyu, X. Zhang, J.J. Koh, Y. Zhang et al., Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes. J. Mater. Chem. A 8, 9058–9067 (2020).

    [156] J. He, L. Ai, T. Yao, Z. Xu, D. Chen et al., In situ reaction fabrication of a mixed-ion/electron-conducting skeleton toward stable lithium metal anodes. Energy Environ. Mater. 6, 12614 (2023).

    [157] Y. An, Y. Tian, S. Xiong, J. Feng, Y. Qian, Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 15, 11828–11842 (2021).

    [158] H. Lu, J. Hu, Y. Zhang, K. Zhang, X. Yan et al., 3D cold-trap environment printing for long-cycle aqueous Zn-ion batteries. Adv. Mater. 35, e2209886 (2023).

    [159] M. Zhu, S. Li, B. Li, Y. Gong, Z. Du et al., Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes. Sci. Adv. 5, eaau6264 (2019).

    [160] L.-K. Zhao, X.-W. Gao, J. Mu, W.-B. Luo, Z. Liu et al., Durable integrated K-metal anode with enhanced mass transport through potassiphilic porous interconnected mediator. Adv. Funct. Mater. 33, 2304292 (2023).

    [161] P. Zhai, Y. Wei, J. Xiao, W. Liu, J. Zuo et al., In situ generation of artificial solid-electrolyte interphases on 3D conducting scaffolds for high-performance lithium-metal anodes. Adv. Energy Mater. 10, 1903339 (2020).

    [162] G. Huang, S. Chen, P. Guo, R. Tao, K. Jie et al., In situ constructing lithiophilic NiFx nanosheets on Ni foam current collector for stable lithium metal anode via a succinct fluorination strategy. Chem. Eng. J. 395, 125122 (2020).

    [163] H. Zheng, Q. Zhang, Q. Chen, W. Xu, Q. Xie et al., 3D lithiophilic–lithiophobic–lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode. J. Mater. Chem. A 8, 313–322 (2020).

    [164] Y. Li, M. Xiao, C. Shen, L. Cui, W. Yang et al., Three-dimensional SEI framework induced by ion regulation in toroidal magnetic field for lithium metal battery. Cell Rep. Phys. Sci. 3, 101080 (2022).

    [165] H.-F. Wang, Q. Xu, Materials design for rechargeable metal-air batteries. Matter 1, 565–595 (2019).

    [166] P. Zhang, Y. Zhao, X. Zhang, Functional and stability orientation synthesis of materials and structures in aprotic Li–O2 batteries. Chem. Soc. Rev. 47, 2921–3004 (2018).

    [167] H.-F. Wang, C. Tang, Q. Zhang, A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn–air batteries. Adv. Funct. Mater. 28, 1803329 (2018).

    [168] N. Mahne, O. Fontaine, M.O. Thotiyl, M. Wilkening, S.A. Freunberger, Mechanism and performance of lithium-oxygen batteries: a perspective. Chem. Sci. 8, 6716–6729 (2017).

    [169] H.-S. Lim, W.-J. Kwak, D.T. Nguyen, W. Wang, W. Xu et al., Three-dimensionally semi-ordered macroporous air electrodes for metal–oxygen batteries. J. Mater. Chem. A 11, 5746–5753 (2023).

    [170] J.-J. Xu, Z.-L. Wang, D. Xu, F.-Z. Meng, X.-B. Zhang, 3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li–O2 batteries with enhanced rate capability and cyclic performance. Energy Environ. Sci. 7, 2213–2219 (2014).

    [171] C. Li, Z. Guo, Y. Pang, Y. Sun, X. Su et al., Three-dimensional ordered macroporous FePO4 as high-efficiency catalyst for rechargeable Li–O2 batteries. ACS Appl. Mater. Interfaces 8, 31638–31645 (2016).

    [172] W. Yao, Y. Yuan, G. Tan, C. Liu, M. Cheng et al., Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc. 141, 12832–12838 (2019).

    [173] R.R. Mitchell, B.M. Gallant, Y. Shao-Horn, C.V. Thompson, Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J. Phys. Chem. Lett. 4, 1060–1064 (2013).

    [174] H. Wang, X. Wang, M. Li, L. Zheng, D. Guan et al., Porous materials applied in nonaqueous Li–O2 batteries: status and perspectives. Adv. Mater. 32, e2002559 (2020).

    [175] J. Wu, B. Liu, X. Fan, J. Ding, X. Han et al., Carbon-based cathode materials for rechargeable zinc-air batteries: from current collectors to bifunctional integrated air electrodes. Carbon Energy 2, 370–386 (2020).

    [176] Z. Lyu, G.J.H. Lim, R. Guo, Z. Kou, T. Wang et al., 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li–O2 batteries. Adv. Funct. Mater. 29, 1806658 (2019).

    [177] C. Chen, S. Xu, Y. Kuang, W. Gan, J. Song et al., Nature-inspired tri-pathway design enabling high-performance flexible Li–O2 batteries. Adv. Energy Mater. 9, 1802964 (2019).

    [178] N. Luo, G.-J. Ji, H.-F. Wang, F. Li, Q.-C. Liu et al., Process for a free-standing and stable all-metal structure for symmetrical lithium–oxygen batteries. ACS Nano 14, 3281–3289 (2020).

    [179] G. Liu, L. Zhang, S. Wang, L.-X. Ding, H. Wang, Hierarchical NiCo2O4 nanosheets on carbon nanofiber films for high energy density and long-life Li–O2 batteries. J. Mater. Chem. A 5, 14530–14536 (2017).

    [180] F. Yang, X. Liu, H. Zhang, J. Zhou, J. Jiang et al., Boosting oxygen catalytic kinetics of carbon nanotubes by oxygen-induced electron density modulation for advanced Zn-air batteries. Energy Storage Mater. 30, 138–145 (2020).

    [181] T. Jin, J. Nie, M. Dong, B. Chen, J. Nie et al., 3D interconnected honeycomb-like multifunctional catalyst for Zn–air batteries. Nano-Micro Lett. 15, 26 (2022).

    [182] T. Van Tam, S.G. Kang, M.H. Kim, S.G. Lee, S.H. Hur et al., Novel graphene hydrogel/B-doped graphene quantum dots composites as trifunctional electrocatalysts for Zn–air batteries and overall water splitting. Adv. Energy Mater. 9, 1900945 (2019).

    [183] J. Wu, H. Zhou, Q. Li, M. Chen, J. Wan et al., Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 9, 1900149 (2019).

    [184] K. Hu, T. Yu, Y. Zhang, X. Lin, Y. Zhao et al., Inhibiting surface diffusion to synthesize 3D bicontinuous nanoporous N-doped carbon for boosting oxygen reduction reaction in flexible all-solid-state Al-air batteries. Adv. Funct. Mater. 31, 2170284 (2021).

    [185] M. Jiang, C. Fu, J. Yang, Q. Liu, J. Zhang et al., Defect-engineered MnO2 enhancing oxygen reduction reaction for high performance Al–air batteries. Energy Storage Mater. 18, 34–42 (2019).

    [186] Q. Huang, Y. Xu, Y. Guo, L. Zhang, Y. Hu et al., Highly graphitized N-doped carbon nanosheets from 2-dimensional coordination polymers for efficient metal-air batteries. Carbon 188, 135–145 (2022).

    [187] Q. Liao, G. Li, R. Ding, Z. He, M. Jiang et al., Facile synthesis of CO/N-doped carbon nanotubes and the application in alkaline and neutral metal-air batteries. Int. J. Hydrog. Energy 46, 31253–31261 (2021).

    [188] Z. Zhang, Z. Li, C. Sun, T. Zhang, S. Wang, Preparation and properties of an amorphous MnO2/CNTs-OH catalyst with high dispersion and durability for magnesium-air fuel cells. Catal. Today 298, 241–249 (2017).

    [189] B. Guo, R. Ma, Z. Li, S. Guo, J. Luo et al., Hierarchical N-doped porous carbons for Zn–air batteries and supercapacitors. Nano-Micro Lett. 12, 20 (2020).

    [190] C. Li, X. Li, Q. Yang, P. Sun, L. Wu et al., Tuning the mechanical and electrical properties of porous electrodes for architecting 3D microsupercapacitors with batteries-level energy. Adv. Sci. 8, 2004957 (2021).

    [191] A.Y.S. Eng, C.B. Soni, Y. Lum, E. Khoo, Z. Yao et al., Theory-guided experimental design in battery materials research. Sci. Adv. 8, eabm2422 (2022).

    [192] Y.S. Meng, V. Srinivasan, K. Xu, Designing better electrolytes. Science 378, eabq3750 (2022).

    [193] C. Zhu, R.E. Usiskin, Y. Yu, J. Maier, The nanoscale circuitry of battery electrodes. Science 358, eaao2808 (2017).

    [194] K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018).

    [195] S. Rana, R. Kumar, R.S. Bharj, Current trends, challenges, and prospects in material advances for improving the overall safety of lithium-ion battery pack. Chem. Eng. J. 463, 142336 (2023).

    [196] Y. Zhao, Y. Kang, J. Wozny, J. Lu, H. Du et al., Recycling of sodium-ion batteries. Nat. Rev. Mater. 8, 623–634 (2023).

    Jiajia Qiu, Yu Duan, Shaoyuan Li, Huaping Zhao, Wenhui Ma, Weidong Shi, Yong Lei. Insights into Nano- and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage[J]. Nano-Micro Letters, 2024, 16(1): 130
    Download Citation