• Laser & Optoelectronics Progress
  • Vol. 60, Issue 17, 1712007 (2023)
Jiazhong Zheng1,2, Zhigang Li1, Feng Chen3, Zhongming Guo3..., Shu Wang1 and Min Ji1,*|Show fewer author(s)
Author Affiliations
  • 1Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • 2University of Science and Technology of China, Hefei 230026, Anhui , China
  • 3Longyan Tobacco Industry Co., Ltd., Longyan 364030, Fujian , China
  • show less
    DOI: 10.3788/LOP222354 Cite this Article Set citation alerts
    Jiazhong Zheng, Zhigang Li, Feng Chen, Zhongming Guo, Shu Wang, Min Ji. Activated Carbon Weight Detection Based on Microwave Resonance Technology[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1712007 Copy Citation Text show less
    References

    [1] Sun X H, Yang S, Sun P J et al. Progress in research and application of filter additives to reducing tar and harmful components in cigarette smoke[J]. Tobacco Science & Technology, 50, 86-96(2017).

    [2] He J F. Application of new type materials in reducing the tar and harmful components of cigarette smoke[J]. Journal of Zhengzhou University of Light Industry (Natural Science), 22, 53-57(2007).

    [3] Xie X C, Chang J H, Yu C F. Review of the application research of activated carbon in cigarette filter[J]. Journal of Zhengzhou University of Light Industry (Natural Science), 27, 40-45(2012).

    [4] Zhu X H, Chen Y, Yao Y. The application of the microwave in the testing of the tobacco water content[J]. Science and Technology of West China, 6, 39-41(2007).

    [5] Gong Z W. Research on detection method and system of tobacco capsules products based on microwave technology[D](2018).

    [6] Xu D W, Zhang J M, Wang Y J et al. Software design of material density detecting by using microwave resonant technology[J]. Electronic Measurement Technology, 39, 167-170(2016).

    [7] Zhang S W. Comparative study on several fast measurement methods of cigarette moisture[J]. Science-Technology Enterprise, 278-279(2012).

    [8] Gong C R, Song C P, Zhao M Y et al. Application of microwave technology in tobacco industry[J]. Chinese Tobacco Science, 24, 34-36(2003).

    [9] Liu Y C, Liu H Y, Qiao X L et al. Microstructures and dielectric properties of activated carbons[J]. Carbon Techniques, 38, 15-19(2019).

    [10] Lu Z Y, Sun W Q, Wu Z G et al. A study on microwave resonance cavity sensor for detecting cigarette humidity and density[J]. Chinese Journal of Sensors and Actuators, 20, 1030-1033(2007).

    [11] Ning Z Q, Liu J X, Wu Y et al. Infrared spectrum baseline correction method based on improved iterative polynomial fitting[J]. Laser & Optoelectronics Progress, 57, 033001(2020).

    [12] González-Vidal J J, Pérez-Pueyo R, Soneira M J. Automatic morphology-based cubic p-spline fitting methodology for smoothing and baseline-removal of Raman spectra[J]. Journal of Raman Spectroscopy, 48, 878-883(2017).

    [13] Si G S, Liu J X, Li Z G et al. Research on fluorescence background subtraction algorithm of UV Raman based on morphology and polynomial fitting[J]. Acta Optica Sinica, 42, 2230001(2022).

    [14] Guo Y, Zhao X H, Zhang R et al. The noise filtering and baseline correction for harmonic spectrum based on wavelet transform[J]. Spectroscopy and Spectral Analysis, 33, 2172-2176(2013).

    [15] Wang L, Shao L M. Influence of baseline on target factor analysis results of Fourier transform infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry, 49, 474-481(2021).

    [16] Chen Y L, Dai L K. An automated baseline correction method based on iterative morphological operations[J]. Applied Spectroscopy, 72, 731-739(2018).

    [17] Whittaker E T. On a new method of graduation[J]. Proceedings of the Edinburgh Mathematical Society, 41, 63-75(1922).

    [18] Eilers P H C. A perfect smoother[J]. Analytical Chemistry, 75, 3631-3636(2003).

    [19] Zhang Z M, Chen S, Liang Y Z. Baseline correction using adaptive iteratively reweighted penalized least squares[J]. Analyst, 135, 1138-1146(2010).

    [20] Baek S J, Park A, Ahn Y J et al. Baseline correction using asymmetrically reweighted penalized least squares smoothing[J]. Analyst, 140, 250-257(2015).

    [21] Xu D G, Liu S, Cai Y Y et al. Baseline correction method based on doubly reweighted penalized least squares[J]. Applied Optics, 58, 3913-3920(2019).

    [22] Yang Y L, Wang L, Ma C H. Quantitative analysis of liquid steel element in LIBS using SVR improved by particle swarm optimization[J]. Laser & Optoelectronics Progress, 57, 053002(2020).

    [23] Chen P, Qi C, Liu R W et al. Quantitative analysis of carbon content in fly ash using LIBS based on support vector machine regression[J]. Acta Optica Sinica, 42, 0930003(2022).

    [24] Zhou Z H[M]. Machine learning(2016).

    [25] Jiang X Y, Li F S, Wang Q Y et al. Spectrum baseline correction for soil heavy metal detection based on penalized least squares algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 52, 205-212(2021).

    [26] Hu J, Liu Y D, Sun X D et al. Quantitative determination of benzoic acid in flour based on terahertz time-domain spectroscopy and BPNN model[J]. Laser & Optoelectronics Progress, 57, 0730002(2020).

    [27] Liu X H, Huang Y H, Zhang Y X et al. Online weld width detection of laser-MIG hybrid welding based on Kalman filter algorithm compensated by BP neural network[J]. Chinese Journal of Lasers, 49, 1602011(2022).

    [28] Yang H, Huang L, Liu M H et al. Detection of cadmium in navel orange by laser-induced breakdown spectroscopy combined with moving window partial least square[J]. Laser & Optoelectronics Progress, 54, 083002(2017).

    Jiazhong Zheng, Zhigang Li, Feng Chen, Zhongming Guo, Shu Wang, Min Ji. Activated Carbon Weight Detection Based on Microwave Resonance Technology[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1712007
    Download Citation