[1] Z Q SUN, X Q CHEN, Y C HE et al. Toward efficiency limits of crystalline silicon solar cells: recent progress in high-efficiency silicon heterojunction solar cells. Advanced Energy Materials, 2200015(2022).
[2] T MATSUI, H SAI, A BIDIVILLE et al. Progress and limitations of thin-film silicon solar cells. Solar Energy, 486(2018).
[3] J S PARK, S KIM, Z J XIE et al. Point defect engineering in thin-film solar cells. Nature Reviews Materials, 194(2018).
[4] F Z LI, A K Y JEN. Interface engineering in solution-processed thin- film solar cells. Accounts of Materials Research, 272(2022).
[5] K PRAJAPAT, M DHONDE, K SAHU et al. The evolution of organic materials for efficient dye-sensitized solar cells. Journal of Photochemistry & Photobiology, C: Photochemistry Reviews, 100586(2023).
[6] F MA, Y ZHAO, Z H QU et al. Developments of highly efficient perovskite solar cells. Accounts of Materials Research, 716(2023).
[7] Z SOFER, X Z WANG, M H YU. MXene chemistry and applications. Small Methods, 2300778(2023).
[8] G Y WANG, J M PARK, T KANG et al. Anion storage of MXene. Small Methods, 2201440(2023).
[9] Y Y ZHU, J X Ma, P DAS et al. High-voltage MXene-based supercapacitors: present status and future perspectives. Small Methods, 2201609(2023).
[10] Y Y ZHU, S WANG, J X MA et al. Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Storage Materials, 500(2022).
[11] Y GUO, Z G DU, Z J CAO et al. MXene derivatives for energy storage and conversions. Small Methods, 2201559(2023).
[12] X WANG, H LI, H LI et al. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Advanced Functional Materials, 1910302(2020).
[13] M M HU, C CUI, C SHI et al. High-energy-density hydrogen- ion-rocking-chair-hybrid supercapacitors based on Ti3C2Tx MXene and carbon nanotubes mediated by redox active molecule. ACS Nano, 6899(2019).
[14] E MOSTAFAVI, S IRAVANI. MXene-graphene composites: a perspective on biomedical potentials. Nano-Micro Letters, 130(2022).
[15] Y YAO, L Y LAN, X X LIU et al. Spontaneous growth and regulation of noble metal nanoparticles on flexible biomimetic MXene paper for bioelectronics. Biosensors and Bioelectronics, 111799(2019).
[16] H G LEMOS, R M RONCHI, G R PORTUGAL et al. Efficient Ti3C2Tx MXene/TiO2 hybrid photoanodes for dye-sensitized solar cells. ACS Appliedl Energy Materials, 15928(2022).
[17] M KARIMIPOUR, A P PARAMBIL, K T TANKO et al. Functionalized MXene/halide perovskite heterojunctions for perovskite solar cells stable under real outdoor conditions. Advanced Energy Materials, 2301959(2023).
[18] Y J LI, Z H YIN, G R JI et al. 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity. Applied Catalysis B: Environmental, 12(2019).
[19] S W CAO, B J SHEN, T TONG et al. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Advanced Functional Materials, 1800136(2018).
[20] H WANG, R, D. PENG, Z HOOD et al. Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. ChemSusChem, 1490(2016).
[21] L J YIN, Y T LI, X C YAO et al. MXene for solar cells. Nano-Micro Letters, 78(2021).
[22] S AFTAB, M Z LQBAL, S HUSSAIN et al. 2D MXene interface engineering for organic solar cells. Journal of Materials Chemistry C, 13189(2023).
[23] A S R BATI, M BATMUNKH, J G SHAPTER. Emerging 2D layered materials for perovskite solar cells. Advanced Energy Materials, 1902253(2020).
[24] A VAHIDMOHAMMADI, J ROSEN, Y GOGOTSL. The world of two-dimensional carbides and nitrides (MXenes). Science, eabf1581(2021).
[25] Y WEI, P, A. ZHANG, R SOOMRO et al. Advances in the synthesis of 2D MXenes. Advanced Materials, 2103148(2021).
[26] Q Z ZHU, J P LI, P SIMON et al. Two-dimensional MXenes for electrochemical capacitor applications: progress, challenges and perspectives. Energy Storage Materials, 630(2021).
[27] L FU, W XIA. MAX Phases as nanolaminate materials: chemical composition, microstructure, synthesis, properties, and applications. Advanced Engineering Material, 2001191(2021).
[28] J HAEMERS, R GUSMAO, Z SOFER. Synthesis protocols of the most common layered carbide and nitride MAX phases. Small Methods, 1900780(2020).
[29] B ANASORI, M NAGUIB, G EDITORS. Two-dimensional MXenes. MRS Bulletin, 238(2023).
[30] J BJORK, J ROSEN. Functionalizing MXenes by tailoring surface terminations in different chemical environments. Chemistry of Materials, 9108(2021).
[31] X Q XIE, N ZHANG. Positioning MXenes in the photocatalysis landscape: competitiveness, challenges, and future perspectives. Advanced Functional Materials, 2002528(2020).
[32] D X XU, Z D LI, L S LI et al. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Advanced Functional Materials, 2000712(2020).
[33] Z LING, C E.REN, M Q ZHAO et al. Flexible and conductive MXene films and nanocomposites with high capacitance. PNAS, 16676(2014).
[34] C F ZHANG, B ANASORI, A SER-ASCASO et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Advanced Materials, 1702678(2017).
[35] G R BERDIYOROV. Optical properties of functionalized Ti3C2T2 (T=F, O, OH) MXene: first-principles calculations. AIP Advances, 055105(2016).
[36] H LASHGAI, M R ABOLHASSANI, A BOOCHANI et al. Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations. Solid State Communications, 61(2014).
[37] Y L BAI, K ZHOU, N SRIKANTH et al. Dependence of elastic and optical properties on surface terminated groups in two dimensional MXene monolayers: a first-principles study. RSC Advances, 35731(2016).
[38] X T JIANG, KUKLIN A V, A BAEV et al. Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Physics Reports, 1(2020).
[39] H J ZHANG, G YANG, X Q ZUO et al. Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. Journal of Materials Chemistry A, 12913(2016).
[40] T Z GUO, D ZHOU, M GAO et al. Large-area smooth conductive films enabled by scalable slot-die coating of Ti3C2Tx MXene aqueous inks. Advanced Functional Materials, 2213183(2023).
[41] G WANG, L J MA, B X LEI et al. Enhanced electron transport through two-dimensional Ti3C2 in dye-sensitized solar cells. Rare Metals, 3078(2022).
[42] A AGRESTI, A PAZNIAK, S PESCETELLI et al. Titanium- carbide MXenes for work function and interface engineering in perovskite solar cells. Nature Materials, 1228(2019).
[43] B ANASORI, Y XIE, M BEIDAGHI et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 9507(2015).
[44] X H ZHA, K LUO, Q W LI et al. Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes. Europhysics Letters, 26007(2015).
[45] J H PENG, X Z CHEN, W J ONG et al. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: Insights into electro- and photocatalysis. Chem, 18(2019).
[46] Y Y LIU, H XIAO, W A GODDARD. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. Journal of the American Chemical Society, 15853(2016).
[47] L YANG, P LI, J G MA et al. MXenes for perovskite solar cells: Progress and prospects. Journal of Energy Chemistry, 443(2023).
[48] K WANG, Y T SHI, B LI et al. Amorphous inorganic electron- selective layers for efficient perovskite solar cells: feasible strategy towards room-temperature fabrication. Advanced Materials, 1891(2016).
[49] YU ZHAO, X ZHANG, X F HAN et al. Tuning the reactivity of PbI2 film via monolayer Ti3C2Tx MXene for two-step-processed CH3NH3PbI3 solar cells. Chemical Engineering Journal, 127912(2021).
[50] HANDOKO A D, STEINMANN S N, F X WEI et al. Theory- guided materials design: two-dimensional MXenes in electro- and photocatalysis. Nanoscale Norizons, 1014(2019).
[51] S KUMAR, S KUMAR, R N RAI. Recent development in two-dimensional material-based advanced photoanodes for high- performance dye-sensitized solar cells. Solar Energy, 606(2023).
[52] S H HE, Z LAN, B ZHANG et al. Holistically optimizing charge carrier dynamics enables high-performance dye-sensitized solar cells and photodetectors. ACS Applied Materials & Interface, 43576(2022).
[53] L YANG, P F HOU, B N WANG et al. Performance improvement of dye-sensitized double perovskite solar cells by adding Ti3C2Tx MXene. Chemical Engineering Journal, 136963(2022).
[54] S DING, C Q YANG, J YUAN et al. An overview of the preparation and application of counter electrodes for DSSCs. RSC Advances, 12309(2023).
[55] S WEN, J HUANG, T T LI et al. Multiphase nanosheet-nanowire cerium oxide and nickel-cobalt phosphide for highly-efficient electrocatalytic overall water splitting. Applied Catalysis B: Environmental, 121678(2022).
[56] Z M WANG, M CHENG, R B YU. Doping regulation in transition metal phosphides for hydrogen evolution catalysts. Chemical Journal of Chinese Universities, 20220544(2023).
[57] Y HE, G YUE, J HUO et al. A dye-sensitized solar cells with an efficiency of 10.01% based on the MoP/MoNiP2@Ti3C2 composite counter electrode. Materials Today Sustainability, 100329(2023).
[58] A N ENYASHIN, A L IVANOVSKII. Two-dimensional titanium carbonitrides and their hydroxylated derivatives: structural, electronic properties and stability of MXenes Ti3C2-xNx(OH)2 from DFTB calculations. Journal of Solid State Chemistry, 42(2013).
[59] X Z CHEN, Z Z KONG, N LI et al. Proposing the prospects of Ti3CN transition metal carbides (MXenes) as anodes of Li-ion batteries: a DFT study. Physical Chemistry Chemical Physics, 32937(2016).
[60] Z R LI, P L WANG, Z H LIANG et al. Bismuth nano-nest/Ti3CN quantum dot-based surface plasmon coupling electrochemiluminescence sensor for ascites miRNA-421 detection. Analytical Chemistry, 9706(2023).
[61] D YI, C WANG, L F GAO et al. Ti3CN MXene-based ultra- sensitive optical fiber salinity sensor. Optics Letters, 1381(2022).
[62] W J ZHANG, Y B ZHENG, Y P MIAO et al. High-sensitivity optical fiber photothermal sensor for antibiotic detection with PDMS/Ti3CN MXene composite coating. IEEE Sensors Journal, 2220(2023).
[63] K GORDON, X D ZHOU, L FEI. Carbonitride MXenes: an innovative catalyst support for sustainable hydrogen production. Chem Catalysis, 100664(2023).
[64] D Y LI, C W YANG, S RAJENDRAN et al. Nanoflower-like Ti3CN@TiO2/CdS heterojunction photocatalyst for efficient photocatalytic water splitting. International Journal of Hydrogen Energy, 19580(2022).
[65] Y J XU, F WANG, S LEI et al. In situ grown two-dimensional TiO2/Ti3CN MXene heterojunction rich in Ti3+ species for highly efficient photoelectrocatalytic CO2 reduction. Chemical Engineering Journal, 139392(2023).
[66] F N MENG, L G GAO, Y L YAN et al. Ultra-low-cost coal-based carbon electrodes with seamless interfacial contact for effective sandwich-structured perovskite solar cells. Carbon, 290(2019).
[67] J M CAO, F N MENG, L G GAO et al. Alternative electrodes for HTMs and noble-metal-free perovskite solar cells: 2D MXenes electrodes. RSC Advances, 34152(2019).