Author Affiliations
1Changchun University of Science and Technology, Changchun 130000, China2Suzhou East Clotho Opto-Electronic Technology Co. Ltd. Zhangjiagang 215600, China3Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China4Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215000, Chinashow less
Fig. 1. BYOL architecture
Fig. 2. The flow chart of BSSL method proposed in this paper
Fig. 3. SSTN algorithm architecture. (a) Φ search space; (b) Θ search space; (c) “AEAE” block sequence
Fig. 4. Directional region generation in vertical direction. (a) Area scanned from top to bottom; (b) Area scanned from bottom to top; (c) Merged area in two directions; (d) Scanning performance example
Fig. 5. Superpixel clustering result map of Indian Pines dataset. (a) Original image; (b) Edge image; (c) Superpixel clustering image
Fig. 6. Indian Pines dataset. (a) Pseudo-color image; (b) Corresponding ground object type; (c) Number of sample sets
Fig. 7. University of Pavia dataset. (a) Pseudo-color image; (b) Corresponding ground object type; (c) Number of sample sets
Fig. 8. Salinas dataset. (a) Pseudo-color image; (b) Corresponding ground object type; (c) Number of sample sets
Fig. 9. Classification maps of different methods on Indian Pines dataset
Fig. 10. Classification maps of different methods on University of Pavia dataset
Fig. 11. Classification maps of different methods on Salinas dataset
Fig. 12. The impact of different ratios of pretraining samples on overall accuracy (OA)
Fig. 13. The effect of different number of superpixel blocks on OA on the Indian Pines dataset
Class | SuperPCA | S3PCA | ContrastNet | SSCL | N2SSL | BSSL | 1 | 93.18±0.38 | 100.00±0.00 | 82.54±3.16 | 85.17±2.46 | 92.56±1.32 | 93.09±0.69 | 2 | 89.66±2.65 | 85.94±3.16 | 81.45±2.60 | 93.75±1.57 | 94.34±4.47 | 89.36±2.44 | 3 | 90.75±2.23 | 92.65±5.64 | 89.45±2.31 | 90.38±1.66 | 87.52±7.45 | 94.27±0.83 | 4 | 97.20±2.06 | 95.41±2.30 | 84.34±2.15 | 88.84±2.44 | 94.28±6.25 | 81.66±2.30 | 5 | 96.03±2.48 | 91.22±2.45 | 82.97±1.45 | 87.91±1.78 | 98.16±2.43 | 91.77±0.95 | 6 | 94.13±4.45 | 93.19±3.22 | 93.56±1.56 | 92.09±1.38 | 98.75±1.26 | 98.09±0.65 | 7 | 92.34±3.36 | 91.00±1.83 | 92.67±1.43 | 91.83±1.49 | 96.38±2.61 | 98.22±0.65 | 8 | 98.24±2.62 | 95.65±3.55 | 96.54±0.85 | 97.89±0.45 | 100.00±0.00 | 98.93±0.41 | 9 | 91.03±4.43 | 96.20±3.10 | 99.65±0.93 | 96.94±0.64 | 65.25±1.83 | 97.89±0.97 | 10 | 89.15±4.35 | 91.10±4.50 | 87.54±2.68 | 85.97±1.55 | 89.93±8.40 | 94.87±0.85 | 11 | 94.78±1.44 | 96.68±1.02 | 87.30±2.32 | 92.85±2.10 | 94.53±2.75 | 97.52±0.78 | 12 | 93.53±1.57 | 95.01±1.54 | 93.79±1.46 | 96.09±0.89 | 96.28±0.93 | 97.96±1.30 | 13 | 98.02±1.72 | 99.43±0.05 | 98.56±0.91 | 95.97±0.91 | 99.57±2.15 | 97.06±0.80 | 14 | 99.86±0.03 | 99.86±0.03 | 96.65±0.47 | 98.98±0.47 | 99.07±0.48 | 98.08±0.47 | 15 | 98.37±0.28 | 97.31±1.86 | 85.56±2.53 | 95.12±1.20 | 96.46±5.36 | 97.29±0.89 | 16 | 97.60±1.45 | 98.41±1.00 | 92.57±1.46 | 96.96±1.17 | 99.18±1.14 | 95.54±0.89 | OA | (94.53±0.68)% | (94.80±1.22)% | (90.17±0.98)% | (92.73±1.07)% | (94.58±1.96)% | (95.85±0.69)% | AA | (94.62±0.74)% | (94.94±0.64)% | (90.32±1.17)% | (92.92±0.88)% | (93.89±2.25)% | (95.10±0.63)% | Kappa×100 | 93.73±0.78 | 94.96±0.74 | 89.36±1.21 | 93.12±0.83 | 94.27±1.67 | 95.02±0.76 | recall | 94.66±0.32 | 94.52±0.83 | 90.85±0.37 | 93.41±1.58 | 94.78±2.74 | 95.75±1.54 | f1-score | 94.65±0.74 | 94.02±0.55 | 90.38±0.89 | 92.45±1.35 | 95.38±1.85 | 95.67±2.85 |
|
Table 1. Classification results of different methods on Indian Pines dataset
Class | SuperPCA | S3PCA | ContrastNet | SSCL | N2SSL | BSSL | 1 | 79.65±3.14 | 89.53±4.10 | 94.72±1.44 | 93.04±1.60 | 95.24±1.74 | 97.32±0.89 | 2 | 94.09±1.97 | 93.72±2.82 | 95.13±1.57 | 95.85±1.36 | 97.61±1.19 | 98.74±0.47 | 3 | 97.54±0.34 | 99.66±0.10 | 89.05±3.55 | 93.66±2.35 | 95.67±2.47 | 92.08±1.28 | 4 | 86.60±2.33 | 91.73±2.31 | 91.56±1.56 | 92.08±2.09 | 97.71±0.89 | 92.23±1.14 | 5 | 96.43±2.08 | 99.60±0.26 | 94.78±1.44 | 98.37±0.95 | 99.08±0.46 | 99.55±0.09 | 6 | 94.04±2.17 | 98.88±0.73 | 96.58±0.89 | 95.53±1.60 | 96.83±1.33 | 97.21±0.35 | 7 | 94.01±1.87 | 98.39±0.86 | 96.49±0.84 | 97.59±0.73 | 95.28±2.23 | 95.16±0.71 | 8 | 92.08±3.16 | 97.36±0.91 | 95.97±1.00 | 93.60±1.10 | 92.96±3.91 | 98.34±0.43 | 9 | 98.69±1.62 | 93.76±3.60 | 93.27±1.88 | 95.81±1.47 | 94.63±2.33 | 95.02±1.08 | OA | (91.47±0.65)% | (96.09±1.28)% | (95.39±1.17)% | (95.62±0.90)% | (95.29±2.45)% | (95.93±0.61)% | AA | (92.57±0.45)% | (95.85±0.81)% | (94.17±1.33)% | (95.06±0.67)% | (96.11±1.84)% | (96.18±0.63)% | Kappa×100 | 88.80±0.82 | 94.86±1.66 | 95.7±1.45 | 95.41±0.64 | 95.34±2.31 | 95.91±0.47 | recall | 92.08±1.25 | 95.49±1.28 | 94.56±1.28 | 95.27±0.58 | 95.36±0.67 | 95.68±0.81 | f1-score | 91.20±0.84 | 96.26±0.56 | 94.82±1.92 | 95.34±0.72 | 95.44±1.64 | 95.82±1.26 |
|
Table 2. Classification results of different methods on University of Pavia dataset
Class | SuperPCA | S3PCA | ContrastNet | SSCL | N2SSL | BSSL | 1 | 100.00±0.00 | 100.00±0.00 | 100.00±0.00 | 100.00±0.00 | 100.00±0.00 | 100.00±0.00 | 2 | 99.82±0.11 | 99.84±0.14 | 99.21±0.58 | 98.18±0.50 | 99.57±0.85 | 98.68±0.29 | 3 | 96.94±2.66 | 97.44±1.59 | 97.46±0.93 | 100.00±0.00 | 97.41±0.42 | 100.00±0.00 | 4 | 98.97±0.36 | 98.91±0.49 | 98.25±0.85 | 98.48±0.55 | 98.64±0.67 | 99.64±0.19 | 5 | 99.46±0.04 | 98.99±0.20 | 98.45±0.55 | 98.95±0.90 | 99.48±0.51 | 97.74±0.93 | 6 | 99.59±0.07 | 99.90±0.01 | 99.34±0.07 | 100.00±0.00 | 100.00±0.00 | 100.00±0.00 | 7 | 98.95±1.20 | 98.82±1.22 | 96.54±0.25 | 98.58±0.73 | 100.00±0.00 | 99.05±0.43 | 8 | 99.36±0.18 | 99.88±0.23 | 97.98±1.05 | 96.35±1.35 | 95.59±2.41 | 99.79±0.16 | 9 | 99.66±0.27 | 99.09±1.49 | 98.15±1.16 | 100.00±0.00 | 100.00±0.00 | 98.86±0.83 | 10 | 97.28±0.98 | 95.81±2.66 | 94.12±1.66 | 96.08±0.75 | 99.34±0.84 | 99.02±0.31 | 11 | 98.17±1.30 | 98.54±1.20 | 93.79±1.68 | 96.07±0.53 | 94.84±1.65 | 99.39±0.45 | 12 | 99.79±0.22 | 99.95±0.10 | 98.38±1.46 | 98.23±0.52 | 99.56±0.28 | 99.95±0.28 | 13 | 98.19±0.00 | 98.19±0.00 | 96.87±1.54 | 95.33±0.87 | 98.84±0.64 | 100.00±0.00 | 14 | 97.65±1.00 | 98.04±0.91 | 95.88±1.47 | 97.59±0.81 | 99.57±0.48 | 100.00±0.00 | 15 | 99.43±0.36 | 99.56±0.36 | 99.65±0.08 | 100.00±0.00 | 92.86±0.85 | 99.97±0.00 | 16 | 99.23±0.65 | 98.92±0.52 | 97.11±1.46 | 100.00±0.00 | 99.28±0.34 | 100.00±0.00 | OA | (99.19±0.16)% | (99.16±0.49)% | (97.61±0.78)% | (98.57±0.68)% | (98.97±0.71)% | (99.52±0.27)% | AA | (98.91±0.27)% | (98.87±0.49)% | (97.57±0.52)% | (98.37±0.43)% | (98.44±0.83)% | (99.51±0.23)% | Kappa×100 | 99.09±0.17 | 99.06±0.55 | 97.13±0.46 | 98.06±0.33 | 97.84±0.58 | 99.44±0.12 | recall | 99.37±0.82 | 99.14±0.36 | 97.28±0.68 | 98.37±1.07 | 98.37±0.63 | 99.27±0.34 | f1-score | 98.85±0.67 | 98.68±0.77 | 97.61±1.85 | 98.75±0.67 | 97.86±1.22 | 99.16±0.85 |
|
Table 3. Classification results of different methods on Salinas dataset
Datasets | Evaluation indicators | BSSL-noSP | BSSL | Indian Pines | OA | (92.13±0.28)% | (95.85±0.69)% | AA | (91.42±0.83)% | (95.10±0.63)% | Kappa | 91.97±0.66 | 95.02±0.76 | University of Pavia | OA | (92.71±0.38)% | (95.93±0.61)% | AA | (92.39±0.74)% | (96.18±0.63)% | Kappa | 92.06±0.86 | 95.91±0.47 | Salinas | OA | (94.79±0.56)% | (99.52±0.27)% | AA | (94.48±0.73)% | (99.51±0.23)% | Kappa | 94.27±0.22 | 99.44±0.12 |
|
Table 4. Ablation trial results on three datasets