• Infrared and Laser Engineering
  • Vol. 53, Issue 10, 20240215 (2024)
Xizhen HAN1,2, Zhengang JIANG1, Yuanyuan LIU3, Jian ZHAO4..., Qiang SUN3 and Jianzhuo LIU3|Show fewer author(s)
Author Affiliations
  • 1Changchun University of Science and Technology, Changchun 130000, China
  • 2Suzhou East Clotho Opto-Electronic Technology Co. Ltd. Zhangjiagang 215600, China
  • 3Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 4Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215000, China
  • show less
    DOI: 10.3788/IRLA20240215 Cite this Article
    Xizhen HAN, Zhengang JIANG, Yuanyuan LIU, Jian ZHAO, Qiang SUN, Jianzhuo LIU. BYOL-based self-supervised learning for hyperspectral image classification[J]. Infrared and Laser Engineering, 2024, 53(10): 20240215 Copy Citation Text show less
    BYOL architecture
    Fig. 1. BYOL architecture
    The flow chart of BSSL method proposed in this paper
    Fig. 2. The flow chart of BSSL method proposed in this paper
    SSTN algorithm architecture. (a) Φ search space; (b) Θ search space; (c) “AEAE” block sequence
    Fig. 3. SSTN algorithm architecture. (a) Φ search space; (b) Θ search space; (c) “AEAE” block sequence
    Directional region generation in vertical direction. (a) Area scanned from top to bottom; (b) Area scanned from bottom to top; (c) Merged area in two directions; (d) Scanning performance example
    Fig. 4. Directional region generation in vertical direction. (a) Area scanned from top to bottom; (b) Area scanned from bottom to top; (c) Merged area in two directions; (d) Scanning performance example
    Superpixel clustering result map of Indian Pines dataset. (a) Original image; (b) Edge image; (c) Superpixel clustering image
    Fig. 5. Superpixel clustering result map of Indian Pines dataset. (a) Original image; (b) Edge image; (c) Superpixel clustering image
    Indian Pines dataset. (a) Pseudo-color image; (b) Corresponding ground object type; (c) Number of sample sets
    Fig. 6. Indian Pines dataset. (a) Pseudo-color image; (b) Corresponding ground object type; (c) Number of sample sets
    University of Pavia dataset. (a) Pseudo-color image; (b) Corresponding ground object type; (c) Number of sample sets
    Fig. 7. University of Pavia dataset. (a) Pseudo-color image; (b) Corresponding ground object type; (c) Number of sample sets
    Salinas dataset. (a) Pseudo-color image; (b) Corresponding ground object type; (c) Number of sample sets
    Fig. 8. Salinas dataset. (a) Pseudo-color image; (b) Corresponding ground object type; (c) Number of sample sets
    Classification maps of different methods on Indian Pines dataset
    Fig. 9. Classification maps of different methods on Indian Pines dataset
    Classification maps of different methods on University of Pavia dataset
    Fig. 10. Classification maps of different methods on University of Pavia dataset
    Classification maps of different methods on Salinas dataset
    Fig. 11. Classification maps of different methods on Salinas dataset
    The impact of different ratios of pretraining samples on overall accuracy (OA)
    Fig. 12. The impact of different ratios of pretraining samples on overall accuracy (OA)
    The effect of different number of superpixel blocks on OA on the Indian Pines dataset
    Fig. 13. The effect of different number of superpixel blocks on OA on the Indian Pines dataset
    ClassSuperPCAS3PCAContrastNetSSCLN2SSLBSSL
    193.18±0.38100.00±0.0082.54±3.1685.17±2.4692.56±1.3293.09±0.69
    289.66±2.6585.94±3.1681.45±2.6093.75±1.5794.34±4.4789.36±2.44
    390.75±2.2392.65±5.6489.45±2.3190.38±1.6687.52±7.4594.27±0.83
    497.20±2.0695.41±2.3084.34±2.1588.84±2.4494.28±6.2581.66±2.30
    596.03±2.4891.22±2.4582.97±1.4587.91±1.7898.16±2.4391.77±0.95
    694.13±4.4593.19±3.2293.56±1.5692.09±1.3898.75±1.2698.09±0.65
    792.34±3.3691.00±1.8392.67±1.4391.83±1.4996.38±2.6198.22±0.65
    898.24±2.6295.65±3.5596.54±0.8597.89±0.45100.00±0.0098.93±0.41
    991.03±4.4396.20±3.1099.65±0.9396.94±0.6465.25±1.8397.89±0.97
    1089.15±4.3591.10±4.5087.54±2.6885.97±1.5589.93±8.4094.87±0.85
    1194.78±1.4496.68±1.0287.30±2.3292.85±2.1094.53±2.7597.52±0.78
    1293.53±1.5795.01±1.5493.79±1.4696.09±0.8996.28±0.9397.96±1.30
    1398.02±1.7299.43±0.0598.56±0.9195.97±0.9199.57±2.1597.06±0.80
    1499.86±0.0399.86±0.0396.65±0.4798.98±0.4799.07±0.4898.08±0.47
    1598.37±0.2897.31±1.8685.56±2.5395.12±1.2096.46±5.3697.29±0.89
    1697.60±1.4598.41±1.0092.57±1.4696.96±1.1799.18±1.1495.54±0.89
    OA(94.53±0.68)%(94.80±1.22)%(90.17±0.98)%(92.73±1.07)%(94.58±1.96)%(95.85±0.69)%
    AA(94.62±0.74)%(94.94±0.64)%(90.32±1.17)%(92.92±0.88)%(93.89±2.25)%(95.10±0.63)%
    Kappa×10093.73±0.7894.96±0.7489.36±1.2193.12±0.8394.27±1.6795.02±0.76
    recall94.66±0.3294.52±0.8390.85±0.3793.41±1.5894.78±2.7495.75±1.54
    f1-score94.65±0.7494.02±0.5590.38±0.8992.45±1.3595.38±1.8595.67±2.85
    Table 1. Classification results of different methods on Indian Pines dataset
    ClassSuperPCAS3PCAContrastNetSSCLN2SSLBSSL
    179.65±3.1489.53±4.1094.72±1.4493.04±1.6095.24±1.7497.32±0.89
    294.09±1.9793.72±2.8295.13±1.5795.85±1.3697.61±1.1998.74±0.47
    397.54±0.3499.66±0.1089.05±3.5593.66±2.3595.67±2.4792.08±1.28
    486.60±2.3391.73±2.3191.56±1.5692.08±2.0997.71±0.8992.23±1.14
    596.43±2.0899.60±0.2694.78±1.4498.37±0.9599.08±0.4699.55±0.09
    694.04±2.1798.88±0.7396.58±0.8995.53±1.6096.83±1.3397.21±0.35
    794.01±1.8798.39±0.8696.49±0.8497.59±0.7395.28±2.2395.16±0.71
    892.08±3.1697.36±0.9195.97±1.0093.60±1.1092.96±3.9198.34±0.43
    998.69±1.6293.76±3.6093.27±1.8895.81±1.4794.63±2.3395.02±1.08
    OA(91.47±0.65)%(96.09±1.28)%(95.39±1.17)%(95.62±0.90)%(95.29±2.45)%(95.93±0.61)%
    AA(92.57±0.45)%(95.85±0.81)%(94.17±1.33)%(95.06±0.67)%(96.11±1.84)%(96.18±0.63)%
    Kappa×10088.80±0.8294.86±1.6695.7±1.4595.41±0.6495.34±2.3195.91±0.47
    recall92.08±1.2595.49±1.2894.56±1.2895.27±0.5895.36±0.6795.68±0.81
    f1-score91.20±0.8496.26±0.5694.82±1.9295.34±0.7295.44±1.6495.82±1.26
    Table 2. Classification results of different methods on University of Pavia dataset
    ClassSuperPCAS3PCAContrastNetSSCLN2SSLBSSL
    1100.00±0.00100.00±0.00100.00±0.00100.00±0.00100.00±0.00100.00±0.00
    299.82±0.1199.84±0.1499.21±0.5898.18±0.5099.57±0.8598.68±0.29
    396.94±2.6697.44±1.5997.46±0.93100.00±0.0097.41±0.42100.00±0.00
    498.97±0.3698.91±0.4998.25±0.8598.48±0.5598.64±0.6799.64±0.19
    599.46±0.0498.99±0.2098.45±0.5598.95±0.9099.48±0.5197.74±0.93
    699.59±0.0799.90±0.0199.34±0.07100.00±0.00100.00±0.00100.00±0.00
    798.95±1.2098.82±1.2296.54±0.2598.58±0.73100.00±0.0099.05±0.43
    899.36±0.1899.88±0.2397.98±1.0596.35±1.3595.59±2.4199.79±0.16
    999.66±0.2799.09±1.4998.15±1.16100.00±0.00100.00±0.0098.86±0.83
    1097.28±0.9895.81±2.6694.12±1.6696.08±0.7599.34±0.8499.02±0.31
    1198.17±1.3098.54±1.2093.79±1.6896.07±0.5394.84±1.6599.39±0.45
    1299.79±0.2299.95±0.1098.38±1.4698.23±0.5299.56±0.2899.95±0.28
    1398.19±0.0098.19±0.0096.87±1.5495.33±0.8798.84±0.64100.00±0.00
    1497.65±1.0098.04±0.9195.88±1.4797.59±0.8199.57±0.48100.00±0.00
    1599.43±0.3699.56±0.3699.65±0.08100.00±0.0092.86±0.8599.97±0.00
    1699.23±0.6598.92±0.5297.11±1.46100.00±0.0099.28±0.34100.00±0.00
    OA(99.19±0.16)%(99.16±0.49)%(97.61±0.78)%(98.57±0.68)%(98.97±0.71)%(99.52±0.27)%
    AA(98.91±0.27)%(98.87±0.49)%(97.57±0.52)%(98.37±0.43)%(98.44±0.83)%(99.51±0.23)%
    Kappa×10099.09±0.1799.06±0.5597.13±0.4698.06±0.3397.84±0.5899.44±0.12
    recall99.37±0.8299.14±0.3697.28±0.6898.37±1.0798.37±0.6399.27±0.34
    f1-score98.85±0.6798.68±0.7797.61±1.8598.75±0.6797.86±1.2299.16±0.85
    Table 3. Classification results of different methods on Salinas dataset
    DatasetsEvaluation indicatorsBSSL-noSPBSSL
    Indian PinesOA(92.13±0.28)%(95.85±0.69)%
    AA(91.42±0.83)%(95.10±0.63)%
    Kappa91.97±0.6695.02±0.76
    University of PaviaOA(92.71±0.38)%(95.93±0.61)%
    AA(92.39±0.74)%(96.18±0.63)%
    Kappa92.06±0.8695.91±0.47
    SalinasOA(94.79±0.56)%(99.52±0.27)%
    AA(94.48±0.73)%(99.51±0.23)%
    Kappa94.27±0.2299.44±0.12
    Table 4. Ablation trial results on three datasets
    Xizhen HAN, Zhengang JIANG, Yuanyuan LIU, Jian ZHAO, Qiang SUN, Jianzhuo LIU. BYOL-based self-supervised learning for hyperspectral image classification[J]. Infrared and Laser Engineering, 2024, 53(10): 20240215
    Download Citation