[1] Y. Liang, Y. Jing, S. Gheytani, K.Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841 (2017).
[2] D. Bruce, K. Haresh, T. Jean-Maríe, Electrical energy storage for the grid: a battery of choices. Science 334, 928 (2011).
[3] Z. Tie, Y. Zhang, J. Zhu, S. Bi, Z. Niu, An air-rechargeable Zn/organic battery with proton storage. J. Am. Chem. Soc. 144, 10301 (2022).
[4] K. Qu, X. Lu, Z. Huang, J. Liu, Synthesis strategies of optimized cathodes and mechanisms for zinc ion capacitors. Mater. Today Energy 30, 101188 (2022).
[5] H.-G. Wang, Y. Wang, Q. Wu, G. Zhu, Recent developments in electrode materials for dual-ion batteries: potential alternatives to conventional batteries. Mater. Today 52, 269 (2022).
[6] H.-G. Wang, Q. Wu, L. Cheng, G. Zhu, The emerging aqueous zinc-organic battery. Coord. Chem. Rev. (2022).
[7] C. Chen, C.S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023).
[8] D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58, 7823 (2019).
[9] Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun et al., Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 19, 4035 (2019).
[10] D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 1 (2016).
[11] Y. Li, J. Zhao, Q. Hu, T. Hao, H. Cao et al., Prussian blue analogs cathodes for aqueous zinc ion batteries. Mater. Today Energy 29, 101095 (2022).
[12] L. Hu, Z. Wu, C. Lu, F. Ye, Q. Liu et al., Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ. Sci. 14, 4095 (2021).
[13] F. Ye, Q. Liu, C. Lu, F. Meng, T. Lin et al., Inorganic manganese oxide/quinone coupling for high-capacity aqueous Zn–ion battery. Energy Storage Mater. 52, 675 (2022).
[14] Z. Wu, C. Lu, F. Ye, L. Zhang, L. Jiang et al., Bilayered VOPO4⋅2H2O nanosheets with high-concentration oxygen vacancies for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. (2021).
[15] Z. Wu, F. Ye, Q. Liu, R. Pang, Y. Liu et al., Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage. Adv. Energy Mater. 12, 2200654 (2022).
[16] Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang et al., An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew. Chem. Int. Ed. 57, 11737 (2018).
[17] Z. Chen, H. Cui, Y. Hou, X. Wang, X. Jin et al., Anion chemistry enabled positive valence conversion to achieve a record high-voltage organic cathode for zinc batteries. Chem 8, 2204 (2022).
[18] J. Xie, Q. Zhang, Recent progress in aqueous monovalent-ion batteries with organic materials as promising electrodes. Mater. Today Energy 18, 100547 (2020).
[19] T. Sun, W. Zhang, Q. Nian, Z. Tao, Molecular engineering design for high-performance aqueous zinc-organic battery. Nano-Micro Lett. 15, 36 (2023).
[20] Y. Zhang, C. Zhao, Z. Li, Y. Wang, L. Yan et al., Synergistic co-reaction of Zn2+ and H+ with carbonyl groups towards stable aqueous zinc–organic batteries. Energy Storage Mater. 52, 386 (2022).
[21] Y. Zhao, Y. Huang, F. Wu, R. Chen, L. Li, High-performance aqueous zinc batteries based on organic/organic cathodes integrating multiredox centers. Adv. Mater. 33, e2106469 (2021).
[22] H. Peng, J. Xiao, Z. Wu, L. Zhang, Y. Geng et al., N-heterocycles extended π-conjugation enables ultrahigh capacity, long-lived, and fast-charging organic cathodes for aqueous zinc batteries. CCS Chem. 5, 1 (2022).
[23] T. Sun, Z.J. Li, Y.F. Zhi, Y.J. Huang, H.J. Fan et al., Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) as an efficient cathode for high-performance aqueous zinc–organic batteries. Adv. Funct. Mater. 31, 2010049 (2021).
[24] S. Zheng, D. Shi, D. Yan, Q. Wang, T. Sun et al., Orthoquinone–based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc–organic batteries. Angew. Chem. Int. Ed. 61, e202117511 (2022).
[25] B. Yang, Y. Ma, D. Bin, H. Lu, Y. Xia, Ultralong-life cathode for aqueous zinc-organic batteries via pouring 9,10-phenanthraquinone into active carbon. ACS Appl. Mater. Interfaces 13, 58818 (2021).
[26] F. Ye, Q. Liu, H. Dong, K. Guan, Z. Chen et al., Organic zinc-ion battery: planar, π-conjugated quinone-based polymer endows ultrafast ion diffusion kinetics. Angew. Chem. Int. Ed. 61, e202214244 (2022).
[27] J. Wang, Z. Liu, H.-G. Wang, F. Cui, G. Zhu, Integrated pyrazine-based porous aromatic frameworks/carbon nanotube composite as cathode materials for aqueous zinc ion batteries. Chem. Eng. J. 450, 138051 (2022).
[28] P.A. Small, Some factors affecting the solubility of polymers. J. Appl. Chem. 3, 71 (2007).
[29] Y.F. Yuan, J.M. Zhang, B.Q. Zhang, J.J. Liu, Y. Zhou et al., Polymer solubility in ionic liquids: dominated by hydrogen bonding. Phys. Chem. Chem. Phys. 23, 21893 (2021).
[30] Z. Lin, H.Y. Shi, L. Lin, X. Yang, W. Wu et al., A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat. Commun. 12, 4424 (2021).
[31] Y. Chen, J. Li, Q. Zhu, K. Fan, Y. Cao et al., Two-dimensional organic supramolecule via hydrogen bonding and π–π stacking for ultrahigh capacity and long-life aqueous zinc-organic batteries. Angew. Chem. Int. Ed. 61, e202116289 (2022).
[32] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, et al. Gaussian 16 rev. C.01 (Wallingford, CT, 2016).
[33] T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 (2012).
[34] S. Emamian, T. Lu, H. Kruse, H. Emamian, Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. J. Comput. Chem. 40, 2868 (2019).
[35] M.M. Coleman, D.J. Skrovanek, J. Hu, P.C. Painter, Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends. Macromolecules 21, 59 (1988).
[36] T. Lu, Q. Chen, Interaction region indicator: a simple real space function clearly revealing both chemical bonds and weak interactions. Chemistry-Methods 1, 231 (2021).
[37] A.G. Carr, R. Mammucari, N.R. Foster, A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem. Eng. J. 172, 1 (2011).
[38] Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu et al., High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4, eaao1761 (2018).
[39] T. Sun, W. Zhang, Q. Nian, Z. Tao, Proton-insertion dominated polymer cathode for high-performance aqueous zinc-ion battery. Chem. Eng. J. 452, 139324 (2023).
[40] T. Lu, Q. Chen, A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure. Theor. Chem. Acc. 139, 25 (2020).
[41] S. Li, J. Shang, M. Li, M. Xu, F. Zeng et al., Design and synthesis of a π-conjugated N-heteroaromatic material for aqueous zinc-organic batteries with ultrahigh rate and extremely long life. Adv. Mater. (2022).
[42] H. Zhang, S. Xie, Z. Cao, D. Xu, L. Wang et al., Extended π-conjugated system in organic cathode with active C=N bonds for driving aqueous zinc-ion batteries. ACS Appl. Energy Mater. 4, 655 (2021).
[43] Z. Song, L. Miao, H. Duan, L. Ruhlmann, Y. Lv et al., Anionic co-insertion charge storage in dinitrobenzene cathodes for high-performance aqueous zinc−organic batteries. Angew. Chem. Int. Ed. 61, e202208821 (2022).
[44] Z. Tie, L. Liu, S. Deng, D. Zhao, Z. Niu, Proton insertion chemistry of a zinc-organic battery. Angew. Chem. Int. Ed. 59, 4920 (2020).
[45] Q. Zhao, Z. Zhu, J. Chen, Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries. Adv. Mater. 29, 1607007 (2017).
[46] F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28, 1804975 (2018).
[47] H. Zhang, D. Xu, L. Wang, Z. Ye, B. Chen et al., A polymer/graphene composite cathode with active carbonyls and secondary amine moieties for high-performance aqueous Zn-organic batteries involving dual-ion mechanism. Small 17, e2100902 (2021).
[48] L. Yan, Y. Zhang, Z. Ni, Y. Zhang, J. Xu et al., Chemically self-charging aqueous zinc-organic battery. J. Am. Chem. Soc. 143, 15369 (2021).
[49] Z. Ye, S. Xie, Z. Cao, L. Wang, D. Xu et al., High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy Storage Mater. 37, 378 (2021).
[50] Z. Li, J. Tan, X. Zhu, S. Xie, H. Fang et al., High capacity and long-life aqueous zinc-ion battery enabled by improving active sites utilization and protons insertion in polymer cathode. Energy Storage Mater. 51, 294 (2022).
[51] L. Lin, Z. Lin, J. Zhu, K. Wang, W. Wu et al., A semi-conductive organic cathode material enabled by extended conjugation for rechargeable aqueous zinc batteries. Energy Environ. Sci. 16, 89 (2023).
[52] H.Y. Shi, Y.J. Ye, K. Liu, Y. Song, X. Sun, A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 57, 16359 (2018).
[53] Z. Lin, L. Lin, J. Zhu, W. Wu, X. Yang et al., An anti-aromatic covalent organic framework cathode with dual-redox centers for rechargeable aqueous zinc batteries. ACS Appl. Mater. Interfaces 14, 38689 (2022).
[54] Y. Wang, C. Wang, Z. Ni, Y. Gu, B. Wang et al., Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries. Adv. Mater. 32, e2000338 (2020).
[55] W. Wang, V.S. Kale, Z. Cao, Y. Lei, S. Kandambeth et al., Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries. Adv. Mater. 33, e2103617 (2021).
[56] L. Yan, Q. Zhu, Y. Qi, J. Xu, Y. Peng et al., Towards high-performance aqueous zinc batteries via a semi-conductive bipolar-type polymer cathode. Angew. Chem. Int. Ed. 61, e202211107 (2022).
[57] H. Peng, S. Huang, V. Montes-Garcia, D. Pakulski, H. Guo et al., Supramolecular engineering of cathode materials for aqueous zinc-ion energy storage devices: Novel benzothiadiazole functionalized two-dimensional olefin-linked COFs. Angew. Chem. Int. Ed. 62, e202216136 (2023).
[58] P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210 (2014).
[59] S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.E. Jiang et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738 (2020).
[60] V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518 (2013).
[61] Z. Yang, X. Huang, P. Meng, M. Jiang, Y. Wang et al., Phenoxazine polymer-based p-type positive electrode for aluminum-ion batteries with ultra-long cycle life. Angew. Chem. Int. Ed. 62, e202216797 (2022).
[62] M. Ludvigsson, J. Lindgren, J. Tegenfeldt, FTIR study of water in cast nafion films. Electrochim. Acta 45, 2267 (2000).
[63] L.N. Sim, S.R. Majid, A.K. Arof, FTIR studies of PEMA/PVDF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib. Spectrosc. 58, 57 (2012).
[64] L. Wang, K.-W. Huang, J. Chen, J. Zheng, Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci. Adv. 5, eaax4279 (2019).