• Infrared and Laser Engineering
  • Vol. 51, Issue 7, 20210614 (2022)
Liang Zhang1,2, Xiaoqian Tian3, Shaoyi Li3,*, and Xi Yang3
Author Affiliations
  • 1China Airborne Missile Academy, Luoyang 471009, China
  • 2Aviation Key Laboratory of Science and Technology on Airborne Guided Weapon, Luoyang 471009, China
  • 3School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
  • show less
    DOI: 10.3788/IRLA20210614 Cite this Article
    Liang Zhang, Xiaoqian Tian, Shaoyi Li, Xi Yang. Anti-interference recognition method of aerial infrared targets based on a spatio-temporal correlation inference network[J]. Infrared and Laser Engineering, 2022, 51(7): 20210614 Copy Citation Text show less
    Representation diagram of space-time correlation inference network
    Fig. 1. Representation diagram of space-time correlation inference network
    Framework diagram of anti-interference recognition algorithm based on space-time correlation inference network
    Fig. 2. Framework diagram of anti-interference recognition algorithm based on space-time correlation inference network
    Schematic diagram of target and interference sample labeling
    Fig. 3. Schematic diagram of target and interference sample labeling
    Initial network structure diagram
    Fig. 4. Initial network structure diagram
    Network structure diagram based on space-time correlation inference
    Fig. 5. Network structure diagram based on space-time correlation inference
    Test chart of target recognition algorithm based on space-time correlation inference network
    Fig. 6. Test chart of target recognition algorithm based on space-time correlation inference network
    Total decoysProjection group numberGroup interval/sNumber of decoys per groupDecoys interval/sManeuver
    2424110.1Without maneuver, turn left, jump
    2412120.1Without maneuver, turn left, jump
    246140.1Without maneuver, turn left, jump
    Table 1. Interference projection strategy
    C=1
    Y1 Y2 Y3 Y25
    Z1 0000
    Z2 0.220 00.002 500
    Z3 0.778 80.849 70.156 30
    Z4 0.001 20.147 80.673 70
    Z5 06.749 3e-050.168 20
    Z29 0000
    C=0
    Y1 Y2 Y3 Y25
    Z1 0.475 90.039 000
    Z2 0.392 00.479 50.047 30
    Z3 0.129 30.328 30.401 90
    Z4 0.002 90.105 20.384 10
    Z5 00.048 00.070 30
    Z29 0000
    Table 2. Time slice conditional probability table of area feature node
    C=1
    注:片内概率表面积的父节点是周长;片间转移概率表面积的父节点是当前时刻的周长以及上一时刻的面积。面积特征节点的转移概率表是三维概率表,表3选取了当前时刻面积的第五个特征区间对应的父节点的转移概率表。
    Y1 Y2 Y3 Y25
    Z1 0000
    Z2 000.162 40
    Z3 05.419 84-060.008 40
    Z4 03.210 0e-050.041 30
    Z5 00.975 60.945 90
    Z29 0000
    C=0
    Y1 Y2 Y3 Y25
    Z1 00.006 70.007 30
    Z2 00.004 30.042 80
    Z3 04.022 5e-040.056 10
    Z4 04.161 5e-040.027 10
    Z5 00.027 30.051 80
    Z29 0000
    Table 3. Transition probability table of area feature node
    Launch distance/mRelative azimuthType of maneuverLaunch conditionsTAN algorithm accuracyAlgorithm accuracy of this paper
    Firing intervalNumber of decoys launchedNumber of launch groups
    700010°Turn left0.422490.7393.29
    700010°Jump0.422487.2294.79
    700010°Turn left0.441283.0692.91
    700010°Jump0.441288.1893.93
    700010°Turn left0.722493.9592.54
    700010°Jump0.722490.5494.41
    700010°Turn left0.741286.7294.72
    700010°Jump0.741291.5494.83
    700040°Turn left0.422489.2293.13
    700040°Jump0.422493.2394.22
    700040°Turn left0.441285.2294.56
    700040°Jump0.441293.4895.05
    700040°Turn left0.722491.9293.87
    700040°Jump0.722495.8896.87
    700040°Turn left0.741286.8291.07
    700040°Jump0.741296.1395.16
    7000100°Turn left0.422485.5192.32
    7000100°Jump0.422495.7795.93
    7000100°Turn left0.441294.6595.33
    7000100°Jump0.441295.3296.55
    7000100°Turn left0.722485.9292.54
    7000100°Jump0.722498.1494.60
    7000100°Turn left0.741297.0796.63
    7000100°Jump0.741297.7594.81
    7000160°Turn left0.422492.5095.15
    7000160°Jump0.422491.2591.91
    7000160°Turn left0.441294.7595.06
    7000160°Jump0.441292.0093.72
    7000160°Turn left0.722495.0496.01
    7000160°Jump0.722493.7594.14
    7000160°Turn left0.741297.3397.42
    7000160°Jump0.741294.5795.57
    Table 4. Airborne infrared target recognition algorithm test results of two algorithms
    Liang Zhang, Xiaoqian Tian, Shaoyi Li, Xi Yang. Anti-interference recognition method of aerial infrared targets based on a spatio-temporal correlation inference network[J]. Infrared and Laser Engineering, 2022, 51(7): 20210614
    Download Citation