• Photonics Research
  • Vol. 13, Issue 4, 941 (2025)
Xuanhao Wang1,6,†,*, Yan Luo2,†, Fudong Xue3,†..., Lijuan Ma3, Yang Xiao1, Dikui Zhou1, Junhui Shi1, Mingshu Zhang4,5,7,*, Pingyong Xu3,8,* and Cheng Ma2,9,*|Show fewer author(s)
Author Affiliations
  • 1Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311100, China
  • 2Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
  • 3Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
  • 4Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
  • 5Neuroscience Research Institute, Peking University, Beijing 100191, China
  • 6e-mail: xh-wang@zhejianglab.org
  • 7e-mail: mszhang@hsc.pku.edu.cn
  • 8e-mail: pyxu@ibp.ac.cn
  • 9e-mail: cheng_ma@tsinghua.edu.cn
  • show less
    DOI: 10.1364/PRJ.546664 Cite this Article Set citation alerts
    Xuanhao Wang, Yan Luo, Fudong Xue, Lijuan Ma, Yang Xiao, Dikui Zhou, Junhui Shi, Mingshu Zhang, Pingyong Xu, Cheng Ma, "Fast parallel quantification for near-infrared genetically encoded reporters with self-calibrated photoacoustic screening," Photonics Res. 13, 941 (2025) Copy Citation Text show less
    References

    [1] L. V. Wang, J. Yao. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods, 13, 627-638(2016).

    [2] L. Lin, L. V. Wang. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol., 19, 365-384(2022).

    [3] L. Lin, P. Hu, J. Shi. Single-breath-hold photoacoustic computed tomography of the breast. Nat. Commun., 9, 2352(2018).

    [4] L. Lin, P. Hu, X. Tong. High-speed three-dimensional photoacoustic computed tomography for preclinical research and clinical translation. Nat. Commun., 12, 882(2021).

    [5] Y. Liu, L. Nie, X. Chen. Photoacoustic molecular imaging: from multiscale biomedical applications towards early-stage theranostics. Trends Biotechnol., 34, 420-433(2016).

    [6] C. Liu, X. Gong, R. Lin. Advances in imaging techniques and genetically encoded probes for photoacoustic imaging. Theranostics, 6, 2414-2430(2016).

    [7] A. P. Jathoul, J. Laufer, O. Ogunlade. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics, 9, 239-246(2015).

    [8] R. Gao, F. Liu, W. Liu. Background-suppressed tumor-targeted photoacoustic imaging using bacterial carriers. Proc. Natl. Acad. Sci., 119, e2121982119(2022).

    [9] A. Krumholz, D. Shcherbakova, J. Xia. Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. Sci. Rep., 4, 3939(2014).

    [10] J. Huang, K. Pu. Activatable molecular probes for second near‐infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew. Chem. Int. Ed., 59, 11717-11731(2020).

    [11] C. T. Richie, L. R. Whitaker, K. W. Whitaker. Near-infrared fluorescent protein iRFP713 as a reporter protein for optogenetic vectors, a transgenic Cre-reporter rat, and other neuronal studies. J. Neurosci. Methods, 284, 1-14(2017).

    [12] Y. Chen, H. Yang, Y. Luo. Photoacoustic tomography with temporal encoding reconstruction (PATTERN) for cross-modal individual analysis of the whole brain. Nat. Commun., 15, 4228(2024).

    [13] L. Li, A. A. Shemetov, M. Baloban. Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo. Nat. Commun., 9, 2734(2018).

    [14] A. C. Stiel, V. Ntziachristos. Controlling the sound of light: photoswitching optoacoustic imaging. Nat. Methods, 21, 1996-2007(2024).

    [15] X. Zhang, X. Chen, Z. Zeng. Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI). ACS Nano, 9, 2659-2667(2015).

    [16] Y. Saito, M. Oikawa, H. Nakazawa. Machine-learning-guided mutagenesis for directed evolution of fluorescent proteins. ACS Synth. Biol., 7, 2014-2022(2018).

    [17] C. Zeymer, D. Hilvert. Directed evolution of protein catalysts. Annu. Rev. Biochem., 87, 131-157(2018).

    [18] L. Herwig, A. J. Rice, C. N. Bedbrook. Directed evolution of a bright near-infrared fluorescent rhodopsin using a synthetic chromophore. Cell Chem. Biol., 24, 415-425(2017).

    [19] J. Laufer, A. Jathoul, M. Pule. In vitro characterization of genetically expressed absorbing proteins using photoacoustic spectroscopy. Biomed Opt. Express, 4, 2477-2490(2013).

    [20] J. Weber, P. C. Beard, S. E. Bohndiek. Contrast agents for molecular photoacoustic imaging. Nat. Methods, 13, 639-650(2016).

    [21] Y. Li, A. Forbrich, J. Wu. Engineering dark chromoprotein reporters for photoacoustic microscopy and FRET imaging. Sci. Rep., 6, 22129(2016).

    [22] U. A. T. Hofmann, A. Fabritius, J. Rebling. High-throughput platform for optoacoustic probing of genetically encoded calcium ion indicators. iScience, 22, 400-408(2019).

    [23] S. Gottschalk, H. Estrada, O. Degtyaruk. Short and long-term phototoxicity in cells expressing genetic reporters under nanosecond laser exposure. Biomaterials, 69, 38-44(2015).

    [24] K. B. Chowdhury, J. Prakash, A. Karlas. A synthetic total impulse response characterization method for correction of hand-held optoacoustic images. IEEE Trans. Med. Imaging, 39, 3218-3230(2020).

    [25] P. Hu, L. Li, L. Lin. Spatiotemporal antialiasing in photoacoustic computed tomography. IEEE Trans. Med. Imaging, 39, 3535-3547(2020).

    [26] M. Xu, L. V. Wang. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E, 71, 016706(2005).

    [27] C. Cai, X. Wang, K. Si. Feature coupling photoacoustic computed tomography for joint reconstruction of initial pressure and sound speed in vivo. Biomed Opt. Express, 10, 3447-3462(2019).

    [28] J. R. Peterson, J. A. Cole, Z. Luthey-Schulten. Parametric studies of metabolic cooperativity in Escherichia coli colonies: strain and geometric confinement effects. PLoS ONE, 12, e0182570(2017).

    [29] T. Vu, P. Klippel, A. J. Canning. On the importance of low-frequency signals in functional and molecular photoacoustic computed tomography. IEEE Trans. Med. Imaging, 43, 771-783(2023).

    [30] J. A. Shapiro. Organization of developing Escherichia coli colonies viewed by scanning electron microscopy. J. Bacteriol., 169, 142-156(1987).

    [31] X. L. Dean-Ben, D. Razansky. A practical guide for model-based reconstruction in optoacoustic imaging. Front. Phys., 10, 1028258(2022).

    [32] S. Bu, Z. Liu, T. Shiina. Model-based reconstruction integrated with fluence compensation for photoacoustic tomography. IEEE Trans. Biomed. Eng., 59, 1354-1363(2012).

    [33] E. B. Van Munster, G. J. Kremers, M. J. Adjobo-Hermans. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. J. Microsc., 218, 253-262(2005).

    [34] D. S. Bindels, L. Haarbosch, L. van Weeren. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods, 14, 53-56(2017).

    [35] R. Li, Y. Shen. An old method facing a new challenge: re-visiting housekeeping proteins as internal reference control for neuroscience research. Life Sci., 92, 747-751(2013).

    [36] S. L. Eaton, S. L. Roche, M. Llavero Hurtado. Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting. PLoS ONE, 8, e72457(2013).

    [37] B. Cox, J. Laufer, P. Beard. The challenges for quantitative photoacoustic imaging. Proc. SPIE, 7177(2009).

    [38] Y. Liu, H. Jiang, Z. Yuan. Two schemes for quantitative photoacoustic tomography based on Monte Carlo simulation. Med. Phys., 43, 3987-3997(2016).

    [39] A. Fabritius, D. Ng, A. M. Kist. Imaging-based screening platform assists protein engineering. Cell Chem. Biol., 25, 1554-1561.e8(2018).

    [40] V. V. Verkhusha, K. A. Lukyanov. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat. Biotechnol., 22, 289-296(2004).

    [41] J. Liljeruhm, S. K. Funk, S. Tietscher. Engineering a palette of eukaryotic chromoproteins for bacterial synthetic biology. J. Biol. Eng., 12(2018).

    Xuanhao Wang, Yan Luo, Fudong Xue, Lijuan Ma, Yang Xiao, Dikui Zhou, Junhui Shi, Mingshu Zhang, Pingyong Xu, Cheng Ma, "Fast parallel quantification for near-infrared genetically encoded reporters with self-calibrated photoacoustic screening," Photonics Res. 13, 941 (2025)
    Download Citation