[1] Lakowicz J R[M]. Principles of fluorescence spectroscopy(2006).
[2] Suhling K, French P M W, Phillips D. Time-resolved fluorescence microscopy[J]. Photochemical & Photobiological Sciences, 4, 13-22(2005).
[3] Okabe K, Inada N, Gota C et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy[J]. Nature Communications, 3, 705(2012).
[4] Szmacinski H, Lakowicz J R. Sodium Green as a potential probe for intracellular sodium imaging based on fluorescence lifetime[J]. Analytical Biochemistry, 250, 131-138(1997).
[5] Zheng K Y, Jensen T P, Rusakov D A. Monitoring intracellular nanomolar calcium using fluorescence lifetime imaging[J]. Nature Protocols, 13, 581-597(2018).
[6] Sha J, Liu W M, Zheng X L et al. Polarity-sensitive probe for two-photon fluorescence lifetime imaging of lipid droplets in vitro and in vivo[J]. Analytical Chemistry, 95, 15350-15356(2023).
[7] Zhao Y H, Liu L W, Luo T et al. A platinum-porphine/poly(perfluoroether) film oxygen tension sensor for noninvasive local monitoring of cellular oxygen metabolism using phosphorescence lifetime imaging[J]. Sensors and Actuators B: Chemical, 269, 88-95(2018).
[8] Pliss A, Levchenko S M, Liu L X et al. Cycles of protein condensation and discharge in nuclear organelles studied by fluorescence lifetime imaging[J]. Nature Communications, 10, 455(2019).
[9] Lin F R, Das P, Zhao Y H et al. Monitoring the endocytosis of bovine serum albumin based on the fluorescence lifetime of small squaraine dye in living cells[J]. Biomedical Optics Express, 11, 149-159(2019).
[10] Levchenko S M, Pliss A, Peng X et al. Fluorescence lifetime imaging for studying DNA compaction and gene activities[J]. Light, Science & Applications, 10, 224(2021).
[11] Kashirina A S, López-Duarte I, Kubánková M et al. Monitoring membrane viscosity in differentiating stem cells using BODIPY-based molecular rotors and FLIM[J]. Scientific Reports, 10, 14063(2020).
[12] Zou G J, Yu W H, Xu Y J et al. Investigation of apoptosis based on fluorescence lifetime imaging microscopy with a mitochondria-targeted viscosity probe[J]. RSC Advances, 11, 38750-38758(2021).
[13] Colom A, Derivery E, Soleimanpour S et al. A fluorescent membrane tension probe[J]. Nature Chemistry, 10, 1118-1125(2018).
[14] Shimizu T, Murakoshi H, Matsumoto H et al. Tension sensor based on fluorescence resonance energy transfer reveals fiber diameter-dependent mechanical factors during myelination[J]. Frontiers in Cellular Neuroscience, 15, 685044(2021).
[15] Huang M J, Liang X Y, Zhang Z X et al. Carbon dots for intracellular pH sensing with fluorescence lifetime imaging microscopy[J]. Nanomaterials, 10, 604(2020).
[16] Sanders R, Draaijer A, Gerritsen H C et al. Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy[J]. Analytical Biochemistry, 227, 302-308(1995).
[17] Galletly N P, McGinty J, Dunsby C et al. Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin[J]. The British Journal of Dermatology, 159, 152-161(2008).
[18] Butte P V, Fang Q Y, Javier J A et al. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy[J]. Journal of Biomedical Optics, 15, 027008(2010).
[19] Wang Y L, Song C, Wang M Y et al. Rapid, label-free, and highly sensitive detection of cervical cancer with fluorescence lifetime imaging microscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 6801307(2016).
[20] Cicchi R, Crisci A, Cosci A et al. Time- and spectral-resolved two-photon imaging of healthy bladder mucosa and carcinoma in situ[J]. Optics Express, 18, 3840-3849(2010).
[21] Shen B L, Yan J S, Wang S Q et al. Label-free whole-colony imaging and metabolic analysis of metastatic pancreatic cancer by an autoregulating flexible optical system[J]. Theranostics, 10, 1849-1860(2020).
[22] Yaseen M A, Sakadžić S, Wu W C et al. In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH[J]. Biomedical Optics Express, 4, 307-321(2013).
[23] Zhu X Y, Liu X, Zhang H X et al. High-fidelity NIR-II multiplexed lifetime bioimaging with bright double interfaced lanthanide nanoparticles[J]. Angewandte Chemie: International Edition, 60, 23545-23551(2021).
[24] Kennedy G T, Manning H B, Elson D S et al. A fluorescence lifetime imaging scanning confocal endomicroscope[J]. Journal of Biophotonics, 3, 103-107(2010).
[25] Marcu L. Fluorescence lifetime techniques in medical applications[J]. Annals of Biomedical Engineering, 40, 304-331(2012).
[26] Ueda H H, Nagasawa Y, Murakoshi H. Imaging intracellular protein interactions/activity in neurons using 2-photon fluorescence lifetime imaging microscopy[J]. Neuroscience Research, 179, 31-38(2022).
[27] Qu J L, Niu H B, Guo B P. Fluorescence lifetime imaging microscopy and its applications[J]. Acta Photonica Sinica, 26, 809-817(1997).
[28] Liu X B, Lin D Y, Wu Q Q et al. Recent progress of fluorescence lifetime imaging microscopy technology and its application[J]. Acta Physica Sinica, 67, 178701(2018).
[29] Liu L X, Qi M J, Gao P et al. Application of fluorescence lifetime imaging in cancer diagnosis (invited)[J]. Acta Photonica Sinica, 50, 1017001(2021).
[30] Datta R, Heaster T M, Sharick J T et al. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications[J]. Journal of Biomedical Optics, 25, 071203(2020).
[31] Yguerabide J. Nanosecond fluorescence spectroscopy of macromolecules[M]. Methods in enzymology, 498-578(1972).
[32] Becker W, Su B, Holub O et al. FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors[J]. Microscopy Research and Technique, 74, 804-811(2011).
[33] Krstajić N, Poland S, Levitt J et al. 0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays[J]. Optics Letters, 40, 4305-4308(2015).
[34] Tyndall D, Rae B R, Li D D U et al. A high-throughput time-resolved mini-silicon photomultiplier with embedded fluorescence lifetime estimation in 0.13 μm CMOS[J]. IEEE Transactions on Biomedical Circuits and Systems, 6, 562-570(2012).
[35] Korzh B, Zhao Q Y, Allmaras J P et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector[J]. Nature Photonics, 14, 250-255(2020).
[36] Koenig M, Orthaus-Mueller S, Dowler R et al. Rapid flim: the new and innovative method for ultra-fast imaging of biological processes[J]. Biophysical Journal, 112, 298a(2017).
[37] Becker W, Bermann A, Smietana S. Fast-acquisition TCSPC FLIM with sub-25-ps IRF width[J]. Proceedings of SPIE, 10882, 1088206(2019).
[38] Liu S C, Zhang Z M, Zheng J Y et al. Parallelized fluorescence lifetime imaging microscopy (FLIM) based on photon reassignment[J]. Optics Communications, 421, 83-89(2018).
[39] Qi J, Shao Y H, Liu L X et al. Fast flexible multiphoton fluorescence lifetime imaging using acousto-optic deflector[J]. Optics Letters, 38, 1697-1699(2013).
[40] Yan W, Peng X, Qi J et al. Dynamic fluorescence lifetime imaging based on acousto-optic deflectors[J]. Journal of Biomedical Optics, 19, 116004(2014).
[41] Poland S P, Krstajić N, Monypenny J et al. A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging[J]. Biomedical Optics Express, 6, 277-296(2015).
[42] Poland S P, Chan G K, Levitt J A et al. Multifocal multiphoton volumetric imaging approach for high-speed time-resolved Förster resonance energy transfer imaging in vivo[J]. Optics Letters, 43, 6057-6060(2018).
[43] Erdogan A T, Walker R, Finlayson N et al. A CMOS SPAD line sensor with per-pixel histogramming TDC for time-resolved multispectral imaging[J]. IEEE Journal of Solid-State Circuits, 54, 1705-1719(2019).
[44] Mai H N, Jarman A, Erdogan A T et al. Development of a high-speed line-scanning fluorescence lifetime imaging microscope for biological imaging[J]. Optics Letters, 48, 2042-2045(2023).
[45] Becker W, Hirvonen L M, Milnes J et al. A wide-field TCSPC FLIM system based on an MCP PMT with a delay-line anode[J]. The Review of Scientific Instruments, 87, 093710(2016).
[46] Suhling K, Hirvonen L M, Becker W et al. Wide-field TCSPC-based fluorescence lifetime imaging (FLIM) microscopy[J]. Proceedings of SPIE, 9858, 98580J(2016).
[47] Oleksiievets N, Thiele J C, Weber A et al. Wide-field fluorescence lifetime imaging of single molecules[J]. The Journal of Physical Chemistry A, 124, 3494-3500(2020).
[48] Hirvonen L M, Becker W, Milnes J et al. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector[J]. Applied Physics Letters, 109, 071101(2016).
[49] Hirvonen L M, Nedbal J, Almutairi N et al. Lightsheet fluorescence lifetime imaging microscopy with wide-field time-correlated single photon counting[J]. Journal of Biophotonics, 13, e201960099(2020).
[50] Samimi K, Desa D E, Lin W et al. Light-sheet autofluorescence lifetime imaging with a single-photon avalanche diode array[J]. Journal of Biomedical Optics, 28, 066502(2023).
[51] Wayne M, Ulku A, Ardelean A et al. A 500 × 500 dual-gate SPAD imager with 100% temporal aperture and 1 ns minimum gate length for FLIM and phasor imaging applications[J]. IEEE Transactions on Electron Devices, 69, 2865-2872(2022).
[52] Ulku A C, Bruschini C, Antolovic I M et al. A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 6801212(2019).
[53] Smith J T, Rudkouskaya A, Gao S et al. Characterization of a large gated SPAD array for widefield NIR fluorescence lifetime imaging in vitro and in vivo[J]. Biophysical Journal, 121, 415a(2022).
[54] Bowman A J, Klopfer B B, Juffmann T et al. Electro-optic imaging enables efficient wide-field fluorescence lifetime microscopy[J]. Nature Communications, 10, 4561(2019).
[55] Li R, Liu A, Wu T et al. Digital scanned laser light-sheet fluorescence lifetime microscopy with wide-field time-gated imaging[J]. Journal of Microscopy, 279, 69-76(2020).
[56] Butte P V, Mamelak A N, Nuno M et al. Fluorescence lifetime spectroscopy for guided therapy of brain tumors[J]. NeuroImage, 54, S125-S135(2011).
[57] Unger J, Hebisch C, Phipps J E et al. Real-time diagnosis and visualization of tumor margins in excised breast specimens using fluorescence lifetime imaging and machine learning[J]. Biomedical Optics Express, 11, 1216-1230(2020).
[58] Marsden M, Weaver S S, Marcu L et al. Intraoperative mapping of parathyroid glands using fluorescence lifetime imaging[J]. The Journal of Surgical Research, 265, 42-48(2021).
[59] Weyers B W, Birkeland A C, Marsden M A et al. Intraoperative delineation of p16+ oropharyngeal carcinoma of unknown primary origin with fluorescence lifetime imaging: preliminary report[J]. Head & Neck, 44, 1765-1776(2022).
[60] Qu J L, Liu L X, Chen D N et al. Temporally and spectrally resolved sampling imaging with a specially designed streak camera[J]. Optics Letters, 31, 368-370(2006).
[61] Komura M, Itoh S. Fluorescence measurement by a streak camera in a single-photon-counting mode[J]. Photosynthesis Research, 101, 119-133(2009).
[62] Krishnan R V, Saitoh H, Terada H et al. Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera[J]. Review of Scientific Instruments, 74, 2714-2721(2003).
[63] Kusumi A, Tsuji A, Murata M et al. Development of a streak-camera-based time-resolved microscope fluorometer and its application to studies of membrane fusion in single cells[J]. Biochemistry, 30, 6517-6527(1991).
[64] Camborde L, Jauneau A, Brière C et al. Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy[J]. Nature Protocols, 12, 1933-1950(2017).
[65] Maklygina Y S, Romanishkin I D, Skobeltsin A S et al. Time-resolved fluorescence imaging technique for rat brain tumors analysis[J]. Journal of Physics: Conference Series, 2058, 012028(2021).
[66] Liu L X, Li Y H, Sun L G et al. Fluorescence lifetime imaging microscopy using a streak camera[J]. Proceedings of SPIE, 8948, 89482L(2014).
[67] Chen D N, Li H, Yu B et al. Four-dimensional multi-particle tracking in living cells based on lifetime imaging[J]. Nanophotonics, 11, 1537-1547(2022).
[68] Ma Y Y, Lee Y, Best-Popescu C et al. High-speed compressed-sensing fluorescence lifetime imaging microscopy of live cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2004176118(2021).
[69] Wang X F, Uchida T, Minami S. A fluorescence lifetime distribution measurement system based on phase-resolved detection using an image dissector tube[J]. Applied Spectroscopy, 43, 840-845(1989).
[70] Yahav G, Pawar S, Weber Y et al. Imaging the rotational mobility of carbon dot-gold nanoparticle conjugates using frequency domain wide-field time-resolved fluorescence anisotropy[J]. Journal of Biomedical Optics, 28, 056001(2023).
[71] Zhang Y D, Guldner I H, Nichols E L et al. Instant FLIM enables 4D in vivo lifetime imaging of intact and injured zebrafish and mouse brains[J]. Optica, 8, 885-897(2021).
[72] Serafino M J, Applegate B E, Jo J A. Direct frequency domain fluorescence lifetime imaging using field programmable gate arrays for real time processing[J]. The Review of Scientific Instruments, 91, 033708(2020).
[73] Clayton A H A, Hanley Q S, Arndt-Jovin D J et al. Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)[J]. Biophysical Journal, 83, 1631-1649(2002).
[74] Erkkilä M T, Bauer B, Hecker-Denschlag N et al. Widefield fluorescence lifetime imaging of protoporphyrin IX for fluorescence-guided neurosurgery: an ex vivo feasibility study[J]. Journal of Biophotonics, 12, e201800378(2019).
[75] Reichert D, Erkkilä M T, Holst G et al. Towards real-time wide-field fluorescence lifetime imaging of 5-ALA labeled brain tumors with multi-tap CMOS cameras[J]. Biomedical Optics Express, 11, 1598-1616(2020).
[76] Ducourthial G, Leclerc P, Mansuryan T et al. Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal[J]. Scientific Reports, 5, 18303(2015).
[77] Sparks H, Kondo H, Hooper S et al. Heterogeneity in tumor chromatin-doxorubicin binding revealed by in vivo fluorescence lifetime imaging confocal endomicroscopy[J]. Nature Communications, 9, 2662(2018).
[78] Warren S C, Nobis M, Magenau A et al. Removing physiological motion from intravital and clinical functional imaging data[J]. eLife, 7, e35800(2018).
[79] Streich L, Boffi J C, Wang L et al. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy[J]. Nature Methods, 18, 1253-1258(2021).
[80] Soulet D, Paré A, Coste J et al. Automated filtering of intrinsic movement artifacts during two-photon intravital microscopy[J]. PLoS One, 8, e53942(2013).
[81] Maus M, Cotlet M, Hofkens J et al. An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules[J]. Analytical Chemistry, 73, 2078-2086(2001).
[82] Kim J, Seok J, Lee H et al. Penalized maximum likelihood estimation of lifetime and amplitude images from multi-exponentially decaying fluorescence signals[J]. Optics Express, 21, 20240-20253(2013).
[83] Rowley M I, Coolen A C C, Vojnovic B et al. Robust Bayesian fluorescence lifetime estimation, decay model selection and instrument response determination for low-intensity FLIM imaging[J]. PLoS One, 11, e0158404(2016).
[84] Wang S L, Chacko J V, Sagar A K et al. Nonparametric empirical Bayesian framework for fluorescence-lifetime imaging microscopy[J]. Biomedical Optics Express, 10, 5497-5517(2019).
[85] Yang S, Lee J, Lee Y M et al. Estimation of multiexponential fluorescence decay parameters using compressive sensing[J]. Journal of Biomedical Optics, 20, 096003(2015).
[86] Zhang X, Lin D Y, Niu J J et al. Low photon count fluorescence lifetime analysis based on alternating descent conditional gradient method[J]. Chinese Journal of Lasers, 47, 207022(2020).
[87] Chen P F, Kang Q, Niu J J et al. Fluorescence lifetime tracking and imaging of single moving particles assisted by a low-photon-count analysis algorithm[J]. Biomedical Optics Express, 14, 1718-1731(2023).
[88] Ranjit S, Malacrida L, Jameson D M et al. Fit-free analysis of fluorescence lifetime imaging data using the phasor approach[J]. Nature Protocols, 13, 1979-2004(2018).
[89] Zhou T, Luo T, Song J et al. Phasor-fluorescence lifetime imaging microscopy analysis to monitor intercellular drug release from a pH-sensitive polymeric nanocarrier[J]. Analytical Chemistry, 90, 2170-2177(2018).
[90] Wu G, Nowotny T, Zhang Y L et al. Artificial neural network approaches for fluorescence lifetime imaging techniques[J]. Optics Letters, 41, 2561-2564(2016).
[91] Yao R Y, Ochoa M, Yan P K et al. Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing-a deep learning approach[J]. Light, Science & Applications, 8, 26(2019).
[92] Smith J T, Yao R Y, Sinsuebphon N et al. Fast fit-free analysis of fluorescence lifetime imaging via deep learning[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 24019-24030(2019).
[93] Xiao D, Chen Y, Li D D U. One-dimensional deep learning architecture for fast fluorescence lifetime imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 7000210(2021).
[94] Chen Y I, Chang Y J, Liao S C et al. Generative adversarial network enables rapid and robust fluorescence lifetime image analysis in live cells[J]. Communications Biology, 5, 18(2022).
[95] Zang Z Y, Xiao D, Wang Q et al. Fast analysis of time-domain fluorescence lifetime imaging via extreme learning machine[J]. Sensors, 22, 3758(2022).
[96] Xiao D, Sapermsap N, Chen Y et al. Deep learning enhanced fast fluorescence lifetime imaging with a few photons[J]. Optica, 10, 944-951(2023).
[97] Xiao D, Zang Z Y, Xie W J et al. Spatial resolution improved fluorescence lifetime imaging via deep learning[J]. Optics Express, 30, 11479-11494(2022).
[98] Xiao D, Zang Z Y, Sapermsap N et al. Dynamic fluorescence lifetime sensing with CMOS single-photon avalanche diode arrays and deep learning processors[J]. Biomedical Optics Express, 12, 3450-3462(2021).
[99] Adhikari M, Houhou R, Hniopek J et al. Review of fluorescence lifetime imaging microscopy (FLIM) data analysis using machine learning[J]. Journal of Experimental and Theoretical Analyses, 1, 44-63(2023).
[100] Bowman A J, Kasevich M A. Resonant electro-optic imaging for microscopy at nanosecond resolution[J]. ACS Nano, 15, 16043-16054(2021).
[101] Bowman A J, Huang C, Schnitzer M J et al. Wide-field fluorescence lifetime imaging of neuron spiking and subthreshold activity in vivo[J]. Science, 380, 1270-1275(2023).
[102] Gómez C A, Fu B Y, Sakadžić S et al. Cerebral metabolism in a mouse model of Alzheimer’s disease characterized by two-photon fluorescence lifetime microscopy of intrinsic NADH[J]. Neurophotonics, 5, 045008(2018).
[103] Hou S S, Yang J, Lee J H et al. Near-infrared fluorescence lifetime imaging of amyloid-β aggregates and tau fibrils through the intact skull of mice[J]. Nature Biomedical Engineering, 7, 270-280(2023).
[104] Díaz-García C M, Lahmann C, Martínez-François J R et al. Quantitative in vivo imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor[J]. Journal of Neuroscience Research, 97, 946-960(2019).
[105] Ni H W, Xu Z C, Li D Y et al. Aggregation-induced emission luminogen for in vivo three-photon fluorescence lifetime microscopic imaging[J]. Journal of Innovative Optical Health Sciences, 12, 1940005(2019).
[106] Lin F R, Zhang C S, Zhao Y H et al. In vivo two-photon fluorescence lifetime imaging microendoscopy based on fiber-bundle[J]. Optics Letters, 47, 2137-2140(2022).
[107] Alfonso-Garcia A, Bec J, Sridharan Weaver S et al. Real-time augmented reality for delineation of surgical margins during neurosurgery using autofluorescence lifetime contrast[J]. Journal of Biophotonics, 13, e201900108(2020).
[108] Marsden M, Fukazawa T, Deng Y C et al. FLImBrush: dynamic visualization of intraoperative free-hand fiber-based fluorescence lifetime imaging[J]. Biomedical Optics Express, 11, 5166-5180(2020).
[109] Gorpas D, Davari P, Bec J et al. Time-resolved fluorescence spectroscopy for the diagnosis of oral lichen planus[J]. Clinical and Experimental Dermatology, 43, 546-552(2018).
[110] Sun Y H, Hatami N, Yee M et al. Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery[J]. Journal of Biomedical Optics, 15, 056022(2010).
[111] Yankelevich D R, Ma D L, Liu J et al. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging[J]. The Review of Scientific Instruments, 85, 034303(2014).
[112] Ma D L, Bec J, Gorpas D et al. Technique for real-time tissue characterization based on scanning multispectral fluorescence lifetime spectroscopy (ms-TRFS)[J]. Biomedical Optics Express, 6, 987-1002(2015).
[113] Gorpas D, Phipps J, Bec J et al. Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients[J]. Scientific Reports, 9, 1187(2019).
[114] Marsden M, Weyers B W, Bec J et al. Intraoperative margin assessment in oral and oropharyngeal cancer using label-free fluorescence lifetime imaging and machine learning[J]. IEEE Transactions on Bio-Medical Engineering, 68, 857-868(2021).
[115] Kantelhardt S R, Kalasauskas D, König K et al. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue[J]. Journal of Neuro-Oncology, 127, 473-482(2016).
[116] Erkkilä M T, Reichert D, Hecker-Denschlag N et al. Surgical microscope with integrated fluorescence lifetime imaging for 5-aminolevulinic acid fluorescence-guided neurosurgery[J]. Journal of Biomedical Optics, 25, 071202(2020).
[117] Reichert D, Erkkilae M T, Gesperger J et al. Fluorescence lifetime imaging and spectroscopic co-validation for protoporphyrin IX-guided tumor visualization in neurosurgery[J]. Frontiers in Oncology, 11, 741303(2021).