• Infrared and Laser Engineering
  • Vol. 49, Issue 11, 20201045 (2020)
Yang Zhang1,2, Weidong Huang2,*, Changzhe Dong1,2, Jinru Yuan1,2..., Yan He3,4,*, Yuan Wan3,4, Zijun Wang1,2, Liping Chen3, Xiaopeng Zhu3, Huaguo Zang3, Lingbing Bu5 and Jiqiao Liu3,4|Show fewer author(s)
Author Affiliations
  • 1Shanghai Institute of Satellite Engineering, Shanghai 201109, China
  • 2Shanghai Academy of Spaceflight Technology, Shanghai 201109, China
  • 3Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • 5Institute of Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • show less
    DOI: 10.3788/IRLA20201045 Cite this Article
    Yang Zhang, Weidong Huang, Changzhe Dong, Jinru Yuan, Yan He, Yuan Wan, Zijun Wang, Liping Chen, Xiaopeng Zhu, Huaguo Zang, Lingbing Bu, Jiqiao Liu. Research on the development of the detection satellite technology in oceanographic lidar[J]. Infrared and Laser Engineering, 2020, 49(11): 20201045 Copy Citation Text show less
    Airborne LiDAR system (LADM-Ⅰ,LADM-Ⅱ,Mapper-5000) by Shanghai Institute of Optics and Fine Mechanics[9, 11]
    Fig. 1. Airborne LiDAR system (LADM-Ⅰ,LADM-Ⅱ,Mapper-5000) by Shanghai Institute of Optics and Fine Mechanics[9, 11]
    Ocean data products of airborne (Mapper-5000) double frequency lidar[9, 11]
    Fig. 2. Ocean data products of airborne (Mapper-5000) double frequency lidar[9, 11]
    Graphical representation of light transmission in various kinds of natural water[12]
    Fig. 3. Graphical representation of light transmission in various kinds of natural water[12]
    Plan of NASA Earth science decadal survey
    Fig. 4. Plan of NASA Earth science decadal survey
    Flight calibration prototype test of atmospheric lidar
    Fig. 5. Flight calibration prototype test of atmospheric lidar
    Expected data products of future spaceborne ocean lidar
    Fig. 6. Expected data products of future spaceborne ocean lidar
    Plankton layer within a warm-core eddy in the Gulf of Alaska and the positions of individual fish that were detected in the Oregon coast[8]
    Fig. 7. Plankton layer within a warm-core eddy in the Gulf of Alaska and the positions of individual fish that were detected in the Oregon coast[8]
    Diagram of the chlorophyll concentration measurement[22]
    Fig. 8. Diagram of the chlorophyll concentration measurement[22]
    Brillouin scattering signal varies with temperature and absorption by water[4, 17-21]
    Fig. 9. Brillouin scattering signal varies with temperature and absorption by water[4, 17-21]
    Schematic diagram of measuring shallow water depth and sea ice elevation[11]
    Fig. 10. Schematic diagram of measuring shallow water depth and sea ice elevation[11]
    Prototype of high power blue-green laser
    Fig. 11. Prototype of high power blue-green laser
    ALADIN wind lidar opto-mechanical structure
    Fig. 12. ALADIN wind lidar opto-mechanical structure
    Ocean lidar detector simulation of dynamic range[9, 11]
    Fig. 13. Ocean lidar detector simulation of dynamic range[9, 11]
    ParametersHawkeye Ⅲ(Leica)CZMIL (Optech)LADS HD (Fugro)
    Instrument image
    Measuring objectOcean & LandOcean & LandOcean
    TechniqueMultichannel simulation probeMultichannel simulation probeSimulation probe
    Wavelength532 nm,1064 nm & 1550 nm532 nm & 1064 nm532 nm & 1064 nm
    Investigation depth0.15-50 m0.15-50 m0.15-50 m
    Detecting precision0.36 m (50 m)0.36 m (50 m)0.36 m (50 m)
    Detecting precision10 kHz (Ocean) 500 kHz (Land)10 kHz (Ocean) 70 kHz (Land)3 kHz (Ocean)
    Aspect angle40°40°30°
    Grid density0.8 m×0.8 m (Ocean) 0.1 m×0.1 m (Land)0.8 m×0.8 m (Ocean) 0.3 m×0.3 m (Land)1.4 m×1.4 m (Ocean)
    Table 1.

    Parameters of international representative airborne lidar systems[9-10]

    国外典型机载激光雷达技术指标[9-10]

    ParametersLADM-ⅠLADM-ⅡMapper-5000
    Wavelength1 064 nm & 532 nm1 064 nm & 532 nm1 550 nm,1 064 nm & 532 nm
    Repetition frequency200 Hz1 kHz5 kHz
    Grid density5 m×5 m2.5 m×2.5 m1 m×1 m (Ocean) 0.25 m×0.25 m (Land)
    Weight300 kg350 kg98 kg
    Table 2.

    Parameters of the third airborne lidar system by Shanghai Institute of Optics and Fine Mechanics

    上海光学精密机械研究所研制三代机载激光雷达技术参数

    ParametersOceanLand
    Wavelength1 064 nm & 532 nm1 550 nm
    Repetition frequency5 kHz100-400 kHz
    Grid density1 m×1 m0.25 m×0.25 m
    Scanned area±15°±30°
    Flight altitude100-1 500 m
    Vertical accuracy0.12 m
    Investigation depth0.25-51 m
    Detecting precision0.23 m
    Position accuracy0.26 m
    Power dissipation1.2 kW
    Table 3.

    Parameters of the airborne Mapper-5000 (the third) double frequency lidar

    机载Mapper-5000 (第三代)双频激光雷达海陆技术指标

    Target of detectionTheoryRepeated frequencySingle pulse energySNRFrequency stability
    ForestHeight measurementHighLesserEsserGeneral
    MappingHeight measurementHighestLesserEsserGeneral
    AerosolBack scatteringGeneralBiggishBiggishGeneral
    Atmospheric compositionDifferential absorptionGeneralBiggishBiggishBiggish
    Wind fieldDopplerGeneralBiggishBiggishMaximum
    OceanBack scatteringGeneralMaximumMaximumMaximum
    Table 4.

    Features of spaceborne ocean lidar

    星载海洋探测激光雷达特点

    Yang Zhang, Weidong Huang, Changzhe Dong, Jinru Yuan, Yan He, Yuan Wan, Zijun Wang, Liping Chen, Xiaopeng Zhu, Huaguo Zang, Lingbing Bu, Jiqiao Liu. Research on the development of the detection satellite technology in oceanographic lidar[J]. Infrared and Laser Engineering, 2020, 49(11): 20201045
    Download Citation