[1] M Fermann, I Hartl. Ultrafast fiber laser technology. IEEE Journal of Selected Topics in Quantum Electronics, 15, 191-206(2009).
[2] A Martinez, S Yamashita. Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes. Optics Express, 19, 6155-6163(2011).
[3] J Peng, T Liu, R Shu. Optical frequency counter based on two mode-locked fiber laser combs. Applied Physics B, 92, 513-518(2008).
[4] J Clowes. Next generation light sources for biomedical applications. Optik & Photonik, 3, 36-38(2015).
[5] K Kieu, F Wise. All-fiber normal-dispersion femtosecond laser. Optics Express, 16, 11453-8(2008).
[6] T Wu, K Kieu, N Peyghambarian, et al. Low noise erbium fiber fs frequency comb based on a tapered-fiber carbon nanotube design. Optics Express, 19, 5313-8(2011).
[7] C Zeng, X Liu, L Yun. Bidirectional fiber soliton laser mode-locked by single-wall carbon nanotubes. Optics Express, 21, 18937-18942(2013).
[8] S Turitsyn, B Bale, M Fedoruk. Dispersion-managed solitons in fibre systems and lasers. Physics Reports, 521, 135-203(2012).
[9] Baumgartl M, taç B, Lecaplain C, et al. 130 nJ 77 fs Dissipative soliton fiber laser[C]Lasers & Electrooptics. IEEE, 2010.
[10] J Dudley, C Finot, D Richardson, et al. Self-similarity in ultrafast nonlinear optics. Nature Physics, 3, 597-603(2007).
[11] K Tamura, E Ippen, H Haus, et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Optics Letters, 18, 1080(1993).
[12] D Ma, Y Cai, C Zhou, et al. 37.4 fs pulse generation in an Er: fiber laser at a 225 MHz repetition rate. Optics Letters, 35, 2858-2860(2010).
[13] H Lim, FÖ Ilday, F Wise. Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser. Optics Letters, 28, 660-2(2003).
[14] B Ortaς, M Plötner, T Schreiber, et al. Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers. Optics Express, 15, 15595-15602(2007).
[15] D Yan, B Liu, J Guo, et al. Route to stable dispersion-managed mode-locked Yb-doped fiber lasers with near-zero net cavity dispersion. Optics Express, 28, 29766(2020).
[16] H Liu, K Chow. Enhanced stability of dispersion-managed mode-locked fiber lasers with near-zero net cavity dispersion by high-contrast saturable absorbers. Optics Letters, 39, 150-153(2014).
[17] J Jeon, J Lee, H Ju. Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking. Journal of the Optical Society of America B, 32, 31-37(2014).
[18] A Chong, W Renninger, F Wise. Properties of normal-dispersion femtosecond fiber lasers. Optics Express, 14, 10095(2008).
[19] M Alsaleh, T Uthayakumar, E Felenou, et al. Pulse breaking through spectral filtering in dispersion-managed fiber lasers. Journal of the Optical Society of America B, 35, 276(2018).
[20] C Han, B Liu, Y Song, et al. Nonlinearity optimization of dissipative-soliton fiber laser for generation of pulses with 350 kW peak power. High Power Laser Science and Engineering, 6, 27(2018).
[21] Agrawal G P. Nonlinear Fiber Optics(Fifth Edition)[M]. herls: Elsevier, 2013.
[22] Z Wen, B Lu, X Qi, et al. Effects of spectral filtering on pulse dynamics in a mode-locked fiber laser with a bandwidth tunable filter. Journal of the Optical Society of America B, 36, 952-958(2019).