[1] Yang M and Kang J 2016 Pitch features of environmental sounds J. Sound Vib. 374 312–28
[2] Farbood M M and Price K C 2017 The contribution of timbre attributes to musical tension J. Acoust. Soc. Am. 141 419–27
[3] Nop P and Tippner J 2022 Influence of dimensions of wooden samples for determination of acoustic parameters and sound timbre Appl. Acoust. 196 108895
[4] LiuZY, ZhangXX,MaoYW, ZhuYY, YangZY, ChanCT and Sheng P 2000 Locally resonant sonic materials Science 289 1734–6
[5] Cummer S A, Christensen J and Al`u A 2016 Controlling sound with acoustic metamaterials Nat. Rev. Mater. 1 16001
[6] Ma G C and Sheng P 2016 Acoustic metamaterials: from local resonances to broad horizons Sci. Adv. 2 e1501595
[7] Assouar B, Liang B, Wu Y, Li Y, Cheng J C and Jing Y 2018 Acoustic metasurfaces Nat. Rev. Mater. 3 460–72
[8] Li J S, Wen X H and Sheng P 2021 Acoustic metamaterials J. Appl. Phys. 129 171103
[9] WeiC,ZhangZZ,ChengDX,SunZ,ZhuMHandLiL 2021 An overview of laser-based multiple metallic material additive manufacturing: from macro-to micro-scales Int. J. Extreme Manuf. 3 012003
[10] Ge Q, Li Z Q, Wang Z L, Kowsari K, Zhang W, He X N, Zhou J L and Fang N X 2020 Projection micro stereolithography based 3D printing and its applications Int. J. Extreme Manuf. 2 022004
[11] Wu H,ChenJZ,DuanK,ZhuMY, HouY, ZhouJZ, Ren Y K, Jiang H Y, Fan R and Lu Y 2022 Three dimensional printing of bioinspired crossed-lamellar metamaterials with superior toughness for syntactic foam substitution ACS Appl. Mater. Interfaces 14 42504–12
[12] Xie Y B, Wang W Q, Chen H Y, Konneker A, Popa B I and Cummer S A 2014 Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface Nat. Commun. 5 5553
[13] Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q and Liu X J 2015 Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances Nat. Mater. 14 1013–9
[14] Kaina N, Lemoult F, Fink M and Lerosey G 2015 Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials Nature 525 77–81
[15] Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X and Garcia-Vidal F J 2011 A holey-structured metamaterial for acoustic deep-subwavelength imaging Nat. Phys. 7 52–55
[16] PengYG,ShenYX,GengZG,LiPQ,ZhuJandZhuXF 2020 Super-resolution acoustic image montage via a biaxial metamaterial lens Sci. Bull. 65 1022–9
[17] MeiJ,MaGC,YangM,YangZY, Wen WJandShengP 2012 Dark acoustic metamaterials as super absorbers for low-frequency sound Nat. Commun. 3 756
[18] Ma G C, Yang M, Xiao S W, Yang Z Y and Sheng P 2014 Acoustic metasurface with hybrid resonances Nat. Mater. 13 873–8
[19] Li Y and Assouar B M 2016 Acoustic metasurface-based perfect absorber with deep subwavelength thickness Appl. Phys. Lett. 108 063502
[20] Jiménez N, Huang W, Romero-García V, Pagneux V and Groby J P 2016 Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption Appl. Phys. Lett. 109 121902
[21] Jiang X, Li Y, Liang B, Cheng J C and Zhang L K 2016 Convert acoustic resonances to orbital angular momentum Phys. Rev. Lett. 117 034301
[22] Zhang Z W, Wei Q, Cheng Y, Zhang T, Wu D J and Liu X J 2017 Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice Phys. Rev. Lett. 118 084303
[23] LiY, ShenC,XieYB,LiJF, WangWQ,CummerSAand Jing Y 2017 Tunable asymmetric transmission via lossy acoustic metasurfaces Phys. Rev. Lett. 119 035501
[24] Achilleos V, Theocharis G, Richoux O and Pagneux V 2017 Non-hermitian acoustic metamaterials: role of exceptional points in sound absorption Phys. Rev. B 95 144303
[25] XueHR,YangYH,LiuGG,GaoF, ChongYDand Zhang B L 2019 Realization of an acoustic third-order topological insulator Phys. Rev. Lett. 122 244301
[26] Wang X, Fang X S, Mao D X, Jing Y and Li Y 2019 Extremely asymmetrical acoustic metasurface mirror at the exceptional point Phys. Rev. Lett. 123 214302
[27] Chen H-Z et al 2020 Revealing the missing dimension at an exceptional point Nat. Phys. 16 571–8
[28] Li D T, Huang S B, Cheng Y and Li Y 2021 Compact asymmetric sound absorber at the exceptional point Sci. China 64 244303
[29] YangYG,WangYC,YangYL,ChenXB,LiD,ZhouYH and Shi W M 2021 Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol Sci. China 64 260321
[30] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Fano resonances in nanoscale structures Rev. Mod. Phys. 82 2257–98
[31] HuangSB,ZhouZL,LiDT, LiuT, WangX, ZhuJandLiY 2020 Compact broadband acoustic sink with coherently coupled weak resonances Sci. Bull. 65 373–9
[32] Zhu Y F, Merkel A, Donda K, Fan S W, Cao L Y and Assouar B 2021 Nonlocal acoustic metasurface for ultrabroadband sound absorption Phys. Rev. B 103 064102
[33] Zhou Z L, Huang S B, Li D T, Zhu J and Li Y 2022 Broadband impedance modulation via non-local acoustic metamaterials Natl Sci. Rev. 9 nwab171
[34] Shao C, Zhu Y Z, Long H Y, Liu C, Cheng Y and Liu X J 2022 Metasurface absorber for ultra-broadband sound via over-damped modes coupling Appl. Phys. Lett. 120 083504
[35] Huang S B, Fang X S, Wang X, Assouar B, Cheng Q and Li Y 2018 Acoustic perfect absorbers via spiral metasurfaces with embedded apertures Appl. Phys. Lett. 113 233501
[36] Huang S B, Fang X S, Wang X, Assouar B, Cheng Q and Li Y 2019 Acoustic perfect absorbers via Helmholtz resonators with embedded apertures J. Acoust. Soc. Am. 145 254–62
[37] Donda K, Zhu Y F, Merkel A, Fan S W, Cao L, Wan S and Assouar B 2021 Ultrathin acoustic absorbing metasurface based on deep learning approach Smart Mater. Struct. 30 085003
[38] KongDQ,HuangSB,LiDT, CaiC,ZhouZL,LiuBT, Cao G X, Chen X F, Li Y and Liu S C 2021 Low-frequency multi-order acoustic absorber based on spiral metasurface J. Acoust. Soc. Am. 150 12–18
[39] Liu X W, Liu M L and Xin F X 2023 Sound absorption of a perforated panel backed with perforated porous material: energy dissipation of Helmholtz resonator cavity Mech. Syst. Signal Process. 185 109762
[40] Zhang C and Hu X H 2016 Three-dimensional single-port labyrinthine acoustic metamaterial: perfect absorption with large bandwidth and tunability Phys. Rev. Appl. 6 064025
[41] Yang M and Sheng P 2017 Sound absorption structures: from porous media to acoustic metamaterials Annu. Rev. Mater. Res. 47 83–114
[42] Jiménez N, Romero-García V, Pagneux V and Groby J P 2017 Rainbow-trapping absorbers: broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems Sci. Rep. 7 13595
[43] Long H Y, Shao C, Liu C, Cheng Y and Liu X J 2019 Broadband near-perfect absorption of low-frequency sound by subwavelength metasurface Appl. Phys. Lett. 115 103503
[44] Liu C R, Wu J H, Yang Z R and Ma F Y 2020 Ultra-broadband acoustic absorption of a thin microperforated panel metamaterial with multi-order resonance Compos. Struct. 246 112366
[45] Huang S B, Zhou E M, Huang Z L, Lei P F, Zhou Z L and Li Y 2021 Broadband sound attenuation by metaliner under grazing flow Appl. Phys. Lett. 118 063504
[46] Guo J W, Zhang X, Fang Y and Jiang Z Y 2021 Wideband low-frequency sound absorption by inhomogeneous multi-layer resonators with extended necks Compos. Struct. 260 113538
[47] RenZW,ChengYH,ChenMJ,Yuan XJandFangDN2022 A compact multifunctional metastructure for low-frequency broadband sound absorption and crash energy dissipation Mater. Des. 215 110462
[48] ShenL,ZhuYF, MaoFL,GaoSY, SuZH,LuoZT, Zhang H and Assouar B 2021 Broadband low-frequency acoustic metamuffler Phys. Rev. Appl. 16 064057
[49] JinYB,YangYL,Wen ZH,HeLS,CangY, YangB, Djafari-Rouhani B, Li Y and Li Y 2022 Lightweight sound-absorbing metastructures with perforated fish-belly panels Int. J. Mech. Sci. 226 107396
[50] Cao L Y, Zhu Y F, Wan S, Zeng Y and Assouar B 2022 On the design of non-Hermitian elastic metamaterial for broadband perfect absorbers Int. J. Mech. Sci. 181 103768
[51] Vergara E F, Almeida G N, Barbosa L R, Lenzi A and de Sousa A C 2022 Broadband and low-frequency sound absorption of modified Helmholtz resonator combined with porous layer addition J. Appl. Phys. 132 135114
[52] Fan J X, Song B, Zhang L, Wang X B, Zhang Z, Wei S S, Xiang X, Zhu X F and Shi Y S 2023 Structural design and additive manufacturing of multifunctional metamaterials with low-frequency sound absorption and load-bearing performances Int. J. Mech. Sci. 238 107848
[53] Ding H, Wang N Y, Qiu S, Huang S B, Zhou Z L, Zhou C C, Jia B and Li Y 2022 Broadband acoustic meta-liner with metal foam approaching causality-governed minimal thickness Int. J. Mech. Sci. 232 107601
[54] Kulshreshtha A and Dhakad S K 2020 Preparation of metal foam by different methods: a review Mater. Today 26 1784–90
[55] Fan S H, Suh W and Joannopoulos J D 2003 Temporal coupled-mode theory for the Fano resonance in optical resonators J. Opt. Soc. Am. A 20 569–72
[56] Tan W, Sun Y, Wang Z G and Chen H 2014 Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near-and far-field couplings Appl. Phys. Lett. 104 091107
[57] ZhuWW, FangXS,LiDT, SunY, LiY, JingYandChen H 2018 Simultaneous observation of a topological edge state and exceptional point in an open and non-Hermitian acoustic system Phys. Rev. Lett. 121 124501
[58] Huang S B, Xie S H, Gao H, Hao T, Zhang S, Liu T, Li Y and Zhu J 2022 Acoustic Purcell effect induced by quasibound state in the continuum Fundam. Res. accepted (https://doi. org/10.1016/j.fmre.2022.06.009)
[59] Huang S B, Liu T, Zhou Z L, Wang X, Zhu J and Li Y 2020 Extreme sound confinement from quasibound states in the continuum Phys. Rev. Appl. 14 021001