• International Journal of Extreme Manufacturing
  • Vol. 5, Issue 2, 25501 (2023)
Nengyin Wang1, Chengcheng Zhou1, Sheng Qiu2, Sibo Huang1,3,*..., Bin Jia1, Shanshan Liu1, Junmei Cao1, Zhiling Zhou1, Hua Ding1, Jie Zhu1 and and Yong Li1|Show fewer author(s)
Author Affiliations
  • 1Institute of Acoustics & MOE Key Laboratory of Advanced Micro-Structured Material, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People’s Republic of China
  • 2AECC Commercial Aircraft Engine Co., LTD, Shanghai 200240, People’s Republic of China
  • 3Department of Electrical Engineering, City University of Hong Kong, Hong Kong, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/acbd6d Cite this Article
    Nengyin Wang, Chengcheng Zhou, Sheng Qiu, Sibo Huang, Bin Jia, Shanshan Liu, Junmei Cao, Zhiling Zhou, Hua Ding, Jie Zhu, and Yong Li. Meta-silencer with designable timbre[J]. International Journal of Extreme Manufacturing, 2023, 5(2): 25501 Copy Citation Text show less
    References

    [1] Yang M and Kang J 2016 Pitch features of environmental sounds J. Sound Vib. 374 312–28

    [2] Farbood M M and Price K C 2017 The contribution of timbre attributes to musical tension J. Acoust. Soc. Am. 141 419–27

    [3] Nop P and Tippner J 2022 Influence of dimensions of wooden samples for determination of acoustic parameters and sound timbre Appl. Acoust. 196 108895

    [4] LiuZY, ZhangXX,MaoYW, ZhuYY, YangZY, ChanCT and Sheng P 2000 Locally resonant sonic materials Science 289 1734–6

    [5] Cummer S A, Christensen J and Al`u A 2016 Controlling sound with acoustic metamaterials Nat. Rev. Mater. 1 16001

    [6] Ma G C and Sheng P 2016 Acoustic metamaterials: from local resonances to broad horizons Sci. Adv. 2 e1501595

    [7] Assouar B, Liang B, Wu Y, Li Y, Cheng J C and Jing Y 2018 Acoustic metasurfaces Nat. Rev. Mater. 3 460–72

    [8] Li J S, Wen X H and Sheng P 2021 Acoustic metamaterials J. Appl. Phys. 129 171103

    [9] WeiC,ZhangZZ,ChengDX,SunZ,ZhuMHandLiL 2021 An overview of laser-based multiple metallic material additive manufacturing: from macro-to micro-scales Int. J. Extreme Manuf. 3 012003

    [10] Ge Q, Li Z Q, Wang Z L, Kowsari K, Zhang W, He X N, Zhou J L and Fang N X 2020 Projection micro stereolithography based 3D printing and its applications Int. J. Extreme Manuf. 2 022004

    [11] Wu H,ChenJZ,DuanK,ZhuMY, HouY, ZhouJZ, Ren Y K, Jiang H Y, Fan R and Lu Y 2022 Three dimensional printing of bioinspired crossed-lamellar metamaterials with superior toughness for syntactic foam substitution ACS Appl. Mater. Interfaces 14 42504–12

    [12] Xie Y B, Wang W Q, Chen H Y, Konneker A, Popa B I and Cummer S A 2014 Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface Nat. Commun. 5 5553

    [13] Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q and Liu X J 2015 Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances Nat. Mater. 14 1013–9

    [14] Kaina N, Lemoult F, Fink M and Lerosey G 2015 Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials Nature 525 77–81

    [15] Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X and Garcia-Vidal F J 2011 A holey-structured metamaterial for acoustic deep-subwavelength imaging Nat. Phys. 7 52–55

    [16] PengYG,ShenYX,GengZG,LiPQ,ZhuJandZhuXF 2020 Super-resolution acoustic image montage via a biaxial metamaterial lens Sci. Bull. 65 1022–9

    [17] MeiJ,MaGC,YangM,YangZY, Wen WJandShengP 2012 Dark acoustic metamaterials as super absorbers for low-frequency sound Nat. Commun. 3 756

    [18] Ma G C, Yang M, Xiao S W, Yang Z Y and Sheng P 2014 Acoustic metasurface with hybrid resonances Nat. Mater. 13 873–8

    [19] Li Y and Assouar B M 2016 Acoustic metasurface-based perfect absorber with deep subwavelength thickness Appl. Phys. Lett. 108 063502

    [20] Jiménez N, Huang W, Romero-García V, Pagneux V and Groby J P 2016 Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption Appl. Phys. Lett. 109 121902

    [21] Jiang X, Li Y, Liang B, Cheng J C and Zhang L K 2016 Convert acoustic resonances to orbital angular momentum Phys. Rev. Lett. 117 034301

    [22] Zhang Z W, Wei Q, Cheng Y, Zhang T, Wu D J and Liu X J 2017 Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice Phys. Rev. Lett. 118 084303

    [23] LiY, ShenC,XieYB,LiJF, WangWQ,CummerSAand Jing Y 2017 Tunable asymmetric transmission via lossy acoustic metasurfaces Phys. Rev. Lett. 119 035501

    [24] Achilleos V, Theocharis G, Richoux O and Pagneux V 2017 Non-hermitian acoustic metamaterials: role of exceptional points in sound absorption Phys. Rev. B 95 144303

    [25] XueHR,YangYH,LiuGG,GaoF, ChongYDand Zhang B L 2019 Realization of an acoustic third-order topological insulator Phys. Rev. Lett. 122 244301

    [26] Wang X, Fang X S, Mao D X, Jing Y and Li Y 2019 Extremely asymmetrical acoustic metasurface mirror at the exceptional point Phys. Rev. Lett. 123 214302

    [27] Chen H-Z et al 2020 Revealing the missing dimension at an exceptional point Nat. Phys. 16 571–8

    [28] Li D T, Huang S B, Cheng Y and Li Y 2021 Compact asymmetric sound absorber at the exceptional point Sci. China 64 244303

    [29] YangYG,WangYC,YangYL,ChenXB,LiD,ZhouYH and Shi W M 2021 Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol Sci. China 64 260321

    [30] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Fano resonances in nanoscale structures Rev. Mod. Phys. 82 2257–98

    [31] HuangSB,ZhouZL,LiDT, LiuT, WangX, ZhuJandLiY 2020 Compact broadband acoustic sink with coherently coupled weak resonances Sci. Bull. 65 373–9

    [32] Zhu Y F, Merkel A, Donda K, Fan S W, Cao L Y and Assouar B 2021 Nonlocal acoustic metasurface for ultrabroadband sound absorption Phys. Rev. B 103 064102

    [33] Zhou Z L, Huang S B, Li D T, Zhu J and Li Y 2022 Broadband impedance modulation via non-local acoustic metamaterials Natl Sci. Rev. 9 nwab171

    [34] Shao C, Zhu Y Z, Long H Y, Liu C, Cheng Y and Liu X J 2022 Metasurface absorber for ultra-broadband sound via over-damped modes coupling Appl. Phys. Lett. 120 083504

    [35] Huang S B, Fang X S, Wang X, Assouar B, Cheng Q and Li Y 2018 Acoustic perfect absorbers via spiral metasurfaces with embedded apertures Appl. Phys. Lett. 113 233501

    [36] Huang S B, Fang X S, Wang X, Assouar B, Cheng Q and Li Y 2019 Acoustic perfect absorbers via Helmholtz resonators with embedded apertures J. Acoust. Soc. Am. 145 254–62

    [37] Donda K, Zhu Y F, Merkel A, Fan S W, Cao L, Wan S and Assouar B 2021 Ultrathin acoustic absorbing metasurface based on deep learning approach Smart Mater. Struct. 30 085003

    [38] KongDQ,HuangSB,LiDT, CaiC,ZhouZL,LiuBT, Cao G X, Chen X F, Li Y and Liu S C 2021 Low-frequency multi-order acoustic absorber based on spiral metasurface J. Acoust. Soc. Am. 150 12–18

    [39] Liu X W, Liu M L and Xin F X 2023 Sound absorption of a perforated panel backed with perforated porous material: energy dissipation of Helmholtz resonator cavity Mech. Syst. Signal Process. 185 109762

    [40] Zhang C and Hu X H 2016 Three-dimensional single-port labyrinthine acoustic metamaterial: perfect absorption with large bandwidth and tunability Phys. Rev. Appl. 6 064025

    [41] Yang M and Sheng P 2017 Sound absorption structures: from porous media to acoustic metamaterials Annu. Rev. Mater. Res. 47 83–114

    [42] Jiménez N, Romero-García V, Pagneux V and Groby J P 2017 Rainbow-trapping absorbers: broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems Sci. Rep. 7 13595

    [43] Long H Y, Shao C, Liu C, Cheng Y and Liu X J 2019 Broadband near-perfect absorption of low-frequency sound by subwavelength metasurface Appl. Phys. Lett. 115 103503

    [44] Liu C R, Wu J H, Yang Z R and Ma F Y 2020 Ultra-broadband acoustic absorption of a thin microperforated panel metamaterial with multi-order resonance Compos. Struct. 246 112366

    [45] Huang S B, Zhou E M, Huang Z L, Lei P F, Zhou Z L and Li Y 2021 Broadband sound attenuation by metaliner under grazing flow Appl. Phys. Lett. 118 063504

    [46] Guo J W, Zhang X, Fang Y and Jiang Z Y 2021 Wideband low-frequency sound absorption by inhomogeneous multi-layer resonators with extended necks Compos. Struct. 260 113538

    [47] RenZW,ChengYH,ChenMJ,Yuan XJandFangDN2022 A compact multifunctional metastructure for low-frequency broadband sound absorption and crash energy dissipation Mater. Des. 215 110462

    [48] ShenL,ZhuYF, MaoFL,GaoSY, SuZH,LuoZT, Zhang H and Assouar B 2021 Broadband low-frequency acoustic metamuffler Phys. Rev. Appl. 16 064057

    [49] JinYB,YangYL,Wen ZH,HeLS,CangY, YangB, Djafari-Rouhani B, Li Y and Li Y 2022 Lightweight sound-absorbing metastructures with perforated fish-belly panels Int. J. Mech. Sci. 226 107396

    [50] Cao L Y, Zhu Y F, Wan S, Zeng Y and Assouar B 2022 On the design of non-Hermitian elastic metamaterial for broadband perfect absorbers Int. J. Mech. Sci. 181 103768

    [51] Vergara E F, Almeida G N, Barbosa L R, Lenzi A and de Sousa A C 2022 Broadband and low-frequency sound absorption of modified Helmholtz resonator combined with porous layer addition J. Appl. Phys. 132 135114

    [52] Fan J X, Song B, Zhang L, Wang X B, Zhang Z, Wei S S, Xiang X, Zhu X F and Shi Y S 2023 Structural design and additive manufacturing of multifunctional metamaterials with low-frequency sound absorption and load-bearing performances Int. J. Mech. Sci. 238 107848

    [53] Ding H, Wang N Y, Qiu S, Huang S B, Zhou Z L, Zhou C C, Jia B and Li Y 2022 Broadband acoustic meta-liner with metal foam approaching causality-governed minimal thickness Int. J. Mech. Sci. 232 107601

    [54] Kulshreshtha A and Dhakad S K 2020 Preparation of metal foam by different methods: a review Mater. Today 26 1784–90

    [55] Fan S H, Suh W and Joannopoulos J D 2003 Temporal coupled-mode theory for the Fano resonance in optical resonators J. Opt. Soc. Am. A 20 569–72

    [56] Tan W, Sun Y, Wang Z G and Chen H 2014 Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near-and far-field couplings Appl. Phys. Lett. 104 091107

    [57] ZhuWW, FangXS,LiDT, SunY, LiY, JingYandChen H 2018 Simultaneous observation of a topological edge state and exceptional point in an open and non-Hermitian acoustic system Phys. Rev. Lett. 121 124501

    [58] Huang S B, Xie S H, Gao H, Hao T, Zhang S, Liu T, Li Y and Zhu J 2022 Acoustic Purcell effect induced by quasibound state in the continuum Fundam. Res. accepted (https://doi. org/10.1016/j.fmre.2022.06.009)

    [59] Huang S B, Liu T, Zhou Z L, Wang X, Zhu J and Li Y 2020 Extreme sound confinement from quasibound states in the continuum Phys. Rev. Appl. 14 021001

    Nengyin Wang, Chengcheng Zhou, Sheng Qiu, Sibo Huang, Bin Jia, Shanshan Liu, Junmei Cao, Zhiling Zhou, Hua Ding, Jie Zhu, and Yong Li. Meta-silencer with designable timbre[J]. International Journal of Extreme Manufacturing, 2023, 5(2): 25501
    Download Citation