• Nano-Micro Letters
  • Vol. 16, Issue 1, 213 (2024)
Xiaojun Zeng1,†,*, Xiao Jiang1,†, Ya Ning1..., Yanfeng Gao1,2 and Renchao Che3,4,**|Show fewer author(s)
Author Affiliations
  • 1School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, People’s Republic of China
  • 2School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People’s Republic of China
  • 3Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai 200438, People’s Republic of China
  • 4Zhejiang Laboratory, Hangzhou, 311100, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01449-7 Cite this Article
    Xiaojun Zeng, Xiao Jiang, Ya Ning, Yanfeng Gao, Renchao Che. Constructing Built-In Electric Fields with Semiconductor Junctions and Schottky Junctions Based on Mo–MXene/Mo–Metal Sulfides for Electromagnetic Response[J]. Nano-Micro Letters, 2024, 16(1): 213 Copy Citation Text show less
    References

    [1] Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32, 2204591 (2022).

    [2] J. Yan, Q. Zheng, S. Wang, Y. Tian, W. Gong et al., Multifunctional organic-inorganic hybrid perovskite microcrystalline engineering and electromagnetic response switching multi-band devices. Adv. Mater. 35, 2300015 (2023).

    [3] F. Pan, K. Pei, G. Chen, H. Guo, H. Jiang et al., Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 33(49), 2306599 (2023).

    [4] R. Song, B. Mao, Z. Wang, Y. Hui, N. Zhang et al., Comparison of copper and graphene-assembled films in 5G wireless communication and THz electromagnetic-interference shielding. Proc. Natl. Acad. Sci. U.S.A. 120, e2209807120 (2023).

    [5] H. Jiang, L. Cai, F. Pan, Y. Shi, J. Cheng et al., Ordered heterostructured aerogel with broadband electromagnetic wave absorption based on mesoscopic magnetic superposition enhancement. Adv. Sci. 10(21), 2301599 (2023).

    [6] Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 13, 1227 (2022).

    [7] J. Cheng, H. Zhang, H. Wang, Z. Huang, H. Raza et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 32(24), 2201129 (2022).

    [8] Y. Liu, X. Zhou, Z. Jia, H. Wu, G. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32, 2204499 (2022).

    [9] B. Li, H. Tian, L. Li, W. Liu, J. Liu et al., Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Adv. Funct. Mater. (2024).

    [10] L. Gai, Y. Wang, P. Wan, S. Yu, Y. Chen et al., Compositional and hollow engineering of silicon carbide/carbon microspheres as high-performance microwave absorbing materials with good environmental tolerance. Nano-Micro Lett. 16, 167 (2024).

    [11] F. Pan, M. Ning, Z. Li, D. Batalu, H. Guo et al., Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber. Adv. Funct. Mater. 33, 2300374 (2023).

    [12] M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024).

    [13] K. Zhang, Y. Liu, Y. Liu, Y. Yan, G. Ma et al., Tracking regulatory mechanism of trace Fe on graphene electromagnetic wave absorption. Nano-Micro Lett. 16, 66 (2024).

    [14] J. Cheng, Y. Jin, J. Zhao, Q. Jing, B. Gu et al., From VIB- to VB-group transition metal disulfides: structure engineering modulation for superior electromagnetic wave absorption. Nano-Micro Lett. 16, 29 (2024).

    [15] M. Ning, P. Jiang, W. Ding, X. Zhu, G. Tan et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 31(19), 2011229 (2021).

    [16] J. Liang, F. Ye, Y. Cao, R. Mo, L. Cheng et al., Defect-engineered graphene/Si3N4 multilayer alternating core-shell nanowire membrane: a plainified hybrid for broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 2200141 (2022).

    [17] J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020).

    [18] X. Wu, S. Xie, H. Zhang, Q. Zhang, B. Sels et al., Metal sulfide photocatalysts for lignocellulose valorization. Adv. Mater. 33(50), 2007129 (2021).

    [19] Y. Dong, X. Zhu, F. Pan, Z. Xiang, X. Zhang et al., Fire-retardant and thermal insulating honeycomb-like NiS2/SnS2 nanosheets@3D porous carbon hybrids for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 426, 131272 (2021).

    [20] Z. Tang, L. Xu, C. Xie, L. Guo, L. Zhang et al., Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat. Commun. 14, 5951 (2023).

    [21] L. Xing, X. Li, Z. Wu, X. Yu, J. Liu et al., 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 379, 122241 (2020).

    [22] Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023).

    [23] L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021).

    [24] B. Li, N. Wu, Y. Yang, F. Pan, C. Wang et al., Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 33(11), 2213357 (2023).

    [25] M. Li, Y. Sun, D. Feng, K. Ruan, X. Liu et al., Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 16(5), 7820–7828 (2023).

    [26] Y. Zhang, K. Ruan, Y. Guo, J. Gu, Recent advances of MXenes-based optical functional materials. Adv. Photonics Res. 4(12), 2300224 (2023).

    [27] L. Chen, L. Yue, X. Wang, S. Wu, W. Wang et al., Synergistically accelerating adsorption-electrocataysis of sulfur species via interfacial built-in electric field of SnS2–MXene Mott–Schottky heterojunction in Li–S batteries. Small 19(15), 2206462 (2023).

    [28] J. Choi, Y. Kim, S. Cho, K. Park, H. Kang et al., In situ formation of multiple schottky barriers in a Ti3C2 MXene film and its application in highly sensitive gas sensors. Adv. Funct. Mater. 30(40), 2003998 (2020).

    [29] X. Zhao, M. Liu, Y. Wang, Y. Xiong, P. Yang et al., Designing a built-in electric field for efficient energy electrocatalysis. ACS Nano 16(12), 19959–19979 (2022).

    [30] S. Bai, J. Jiang, Q. Zhang, Y. Xiong, Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 44(10), 2893–2939 (2015).

    [31] M. Eshete, X. Li, L. Yang, X. Wang, J. Zhang et al., Charge steering in heterojunction photocatalysis: general principles, design, construction, and challenges. Small Sci. 3(3), 2200041 (2023).

    [32] Y. Dong, Y. Liu, Y. Hu, K. Ma, H. Jiang et al., Boosting reaction kinetics and reversibility in Mott–Schottky VS2/MoS2 heterojunctions for enhanced lithium storage. Sci. Bull. 65(17), 1470–1478 (2020).

    [33] M. Saraf, B. Chacon, S. Ippolito, R. Lord, M. Anayee et al., Enhancing charge storage of Mo2Ti2C3 MXene by partial oxidation. Adv. Funct. Mater. 34(1), 2306815 (2023).

    [34] B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B. Hosler et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015).

    [35] X. Zeng, X. Jiang, Y. Ning, F. Hu, B. Fan, Construction of dual heterogeneous interface between zigzag-like Mo–MXene nanofibers and small CoNi@NC nanoparticles for electromagnetic wave absorption. J. Adv. Ceram. 12(8), 1562–1576 (2023).

    [36] Y. Sun, K. Liu, X. Hong, M. Chen, J. Kim et al., Probing local strain at MX2-metal boundaries with surface plasmon-enhanced Raman scattering. Nano Lett. 14(9), 5329–5334 (2014).

    [37] X. Wang, T. Zhu, S. Chang, Y. Lu, W. Mi et al., 3D nest-like architecture of core-shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 12(9), 11252–11264 (2020).

    [38] L. Huang, L. Zhao, Y. Zhang, Y. Chen, Q. Zhang et al., Self-limited on-site conversion of MoO3 nanodots into vertically aligned ultrasmall monolayer MoS2 for efficient hydrogen evolution. Adv. Energy Mater. 8(21), 1800734 (2018).

    [39] J. Liu, H. Liang, B. Wei, J. Yun, L. Zhang et al., “Matryoshka Doll” heterostructures induce electromagnetic parameters fluctuation to tailor electromagnetic wave absorption. Small Struct. 4(7), 2200379 (2023).

    [40] J. Liu, L. Zhang, H. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32(26), 2200544 (2022).

    [41] X. Zeng, C. Zhao, Y. Yin, T. Nie, N. Xie et al., Construction of NiCo2O4 nanosheets-covered Ti3C2Tx MXene heterostructure for remarkable electromagnetic microwave absorption. Carbon 193, 26–34 (2022).

    [42] Y. Liu, P. Zhang, N. Sun, B. Anasori, Q. Zhu et al., Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30(23), 1707334 (2018).

    [43] X. Jiang, Q. Wang, L. Song, H. Lu, H. Xu et al., Enhancing electromagnetic wave absorption with core-shell structured SiO2@MXene@MoS2 nanospheres. Carbon Energy (2024).

    [44] Q. Xi, F. Xie, J. Liu, X. Zhang, J. Wang et al., In situ formation ZnIn2S4/Mo2TiC2 Schottky junction for accelerating photocatalytic hydrogen evolution kinetics: manipulation of local coordination and electronic structure. Small 19(24), 2300717 (2023).

    [45] F. Hu, F. Zhang, X. Wang, Y. Li, H. Wang et al., Ultrabroad band microwave absorption from hierarchical MoO3/TiO2/Mo2TiC2Tx hybrids via annealing treatment. J. Adv. Ceram. 11(9), 1466–1478 (2022).

    [46] J. Liu, Z. Jia, W. Zhou, X. Liu, C. Zhang et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption. Chem. Eng. J. 429, 132253 (2022).

    [47] X. Zeng, H. Zhang, R. Yu, G. Stucky, J. Qiu, A phase and interface co-engineered MoPxSy@NiFePxSy@NPS-C hierarchical heterostructure for sustainable oxygen evolution reaction. J. Mater. Chem. A 11(26), 14272–14283 (2023).

    [48] Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 32, 2112294 (2022).

    [49] T. Zeng, G. Chen, Q. Peng, D. Feng, Q. Wang, Nano Sn2S3 embedded in nitrogenous-carbon compounds for long-life and high-rate cycling sodium-ion batteries. ChemSusChem 14(11), 2383–2392 (2021).

    [50] J. Liu, L. Zhang, D. Zang, H. Wu, A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 31(45), 2105018 (2021).

    [51] X. Zeng, C. Zhao, X. Jiang, R. Yu, R. Che, Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption. Small 19(41), 2303393 (2023).

    [52] Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X= F, OH) monolayer. J. Am. Chem. Soc. 134(40), 16909–16916 (2012).

    [53] Z. Chen, J. Zhang, L. Ni, D. Sheng, R. Gao et al., Improving electromagnetic wave absorption property of metal borides/carbon nanocomposites by magnetic-electric balance and ion substitution tuning strategy. Carbon 221, 118901 (2024).

    [54] A. Xie, D. Sheng, W. Liu, Y. Chen, S. Cheng, Enhancing electromagnetic absorption performance of Molybdate@Carbon by metal ion substitution. J. Mater. Sci. Technol. 163, 92–100 (2023).

    [55] Y. Jiao, Z. Dai, M. Feng, J. Luo, Y. Xu, Electromagnetic absorption behavior regulation in bimetallic polyphthalocyanine derived CoFe-alloy/C 0D/2D nanocomposites. Mater. Today Phys. 33, 101058 (2023).

    [56] T. Gao, R. Zhao, Y.X. Li, Z. Zhu, C. Hu et al., Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption. Adv. Funct. Mater. 32(31), 2204370 (2022).

    [57] A. Xie, Z. Ma, Z. Xiong, W. Li, L. Jiang et al., Conjugate ferrocene polymer derived magnetic Fe/C nanocomposites for electromagnetic absorption application. J. Mater. Sci. Technol. 175, 125–131 (2024).

    [58] K. Cole, R. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941).

    [59] Z. Gao, A. Iqbal, T. Hassan, S. Hui, H. Wu et al., Tailoring built-in electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption. Adv. Mater. (2024).

    [60] A. Xie, R. Guo, L. Wu, W. Dong, Anion-substitution interfacial engineering to construct C@MoS2 hierarchical nanocomposites for broadband electromagnetic wave absorption. J. Colloid Interf. Sci. 651, 1–8 (2023).

    [61] Z. Li, L. Zhang, H. Wu, A regulable polyporous graphite/melamine foam for heat conduction, sound absorption and electromagnetic wave absorption. Small 20(11), 2305120 (2024).

    [62] C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024).

    [63] Y. Liu, X. Wei, X. He, J. Yao, R. Tan et al., Multifunctional shape memory composites for Joule heating, self-healing, and highly efficient microwave absorption. Adv. Funct. Mater. 33(5), 2211352 (2023).

    [64] X. Liu, W. Ma, Z. Qiu, T. Yang, J. Wang et al., Manipulation of impedance matching toward 3D-printed lightweight and stiff MXene based aerogels for consecutive multiband tunable electromagnetic wave absorption. ACS Nano 17(9), 8420–8432 (2023).

    [65] J. Wen, G. Chen, S. Hui, Z. Li, J. Yun et al., Plasma induced dynamic coupling of microscopic factors to collaboratively promote EM losses coupling of transition metal dichalcogenide absorbers. Adv. Powder Mater. 3(3), 100180 (2024).

    [66] H. Liang, S. Hui, G. Chen, H. Shen, J. Yun et al., Discovery of deactivation phenomenon in NiCo2S4/NiS2 electromagnetic wave absorbent and its reactivation mechanism. Small Methods (2024).

    [67] S. Hui, X. Zhou, L. Zhang, H. Wu, Constructing multiphase-induced interfacial polarization to surpass defect-induced polarization in multielement sulfide absorbers. Adv. Sci. 11(6), 2307649 (2024).

    Xiaojun Zeng, Xiao Jiang, Ya Ning, Yanfeng Gao, Renchao Che. Constructing Built-In Electric Fields with Semiconductor Junctions and Schottky Junctions Based on Mo–MXene/Mo–Metal Sulfides for Electromagnetic Response[J]. Nano-Micro Letters, 2024, 16(1): 213
    Download Citation