• Infrared and Laser Engineering
  • Vol. 51, Issue 7, 20220395 (2022)
Yuan Lv1, Mingyu Cong1, Yini Zhao2, Kaiqing Niu2, and Ziwei Lu2
Author Affiliations
  • 1School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
  • 2China Academy of Space Technology, Beijing 100094, China
  • show less
    DOI: 10.3788/IRLA20220395 Cite this Article
    Yuan Lv, Mingyu Cong, Yini Zhao, Kaiqing Niu, Ziwei Lu. Research on real-time absolute radiometric calibration technology of infrared cameras[J]. Infrared and Laser Engineering, 2022, 51(7): 20220395 Copy Citation Text show less

    Abstract

    Radiometric calibration technology is the key link to realize quantitative remote sensing. In recent years, with the maturity of infrared telemetry technology, onboard infrared radiation calibration has become an important development direction of space quantitative remote sensing technology. Based on the background of real-time absolute radiometric calibration of infrared cameras, this paper puts forward the semioptical path on-board absolute radiometric calibration and site absolute radiometric calibration based on multitemperature field. Combined with the experimental data, three schemes of onboard calibration, site calibration and cross calibration are used to verify the on-orbit absolute radiometric calibration experiment. The applicable scenarios of onboard calibration, site calibration and cross calibration are analysed. The results show that by combining the semi and all optical calibration data processing and conversion technology, using the site absolute radiation calibration method of the water surface field and land surface field, a suitable calibration site is selected, and typical ground object scenes are added to the land surface field to realize multitemperature field calibration. The radiometric calibration method proposed in this paper realizes real-time high-precision absolute radiometric calibration, and the calibration accuracy is better than 1.5 K.
    $ {\overline {DN} _l} = k(i) \times D{N_l}(i) + D{N_{offset}}(i) $(1)

    View in Article

    $ {\overline {DN} _h} = k(i) \times D{N_h}(i) + D{N_{offset}}(i) $(2)

    View in Article

    $ {\overline {DN} _l} = \frac{1}{n}\sum\limits_{i = 1}^n {{{\overline {DN} }_{l(i)}}} $(3)

    View in Article

    $ {\overline {DN} _h} = \frac{1}{n}\sum\limits_{i = 1}^n {{{\overline {DN} }_{h(i)}}} $(4)

    View in Article

    $ k(i) = \frac{{{{\overline {DN} }_h} - {{\overline {DN} }_l}}}{{{{\overline {DN} }_{h(i)}} - {{\overline {DN} }_{l(i)}}}} $(5)

    View in Article

    $ D{N_{offset}}(i) = {\overline {DN} _h} - k(i) \cdot {\overline {DN} _{h(i)}} $(6)

    View in Article

    $ F(i,j) = G(i,j) \cdot k(i) + D{N_{offset}}(i) $(7)

    View in Article

    $ PRNU = \dfrac{1}{{\overline Y(\phi )}}\sqrt {\frac{{\displaystyle\sum\limits_{n = 1}^N {({Y_n}(\phi ) - \overline Y(\phi )} {)^2}}}{N}} $(8)

    View in Article

    $ PRNU = \frac{{\left| {{Y_{i + 1}}(\phi ) - {Y_i}(\phi )} \right|}}{{({Y_{i + 1}}(\phi ) + {Y_i}(\phi ))/2}} $(9)

    View in Article

    $ K(i) = \frac{{K'(i)}}{{{R_1}(i)}} $(10)

    View in Article

    $ C(i) = C'(i) - {R_2}(i) \cdot K'(i) $(11)

    View in Article

    $ K'(i) = \frac{{D{N_h}(i) - D{N_l}(i)}}{{{L_{eh}} - {L_{el}}}} $(12)

    View in Article

    $ C'(i) = \frac{{D{N_l}(i) \cdot {L_{eh}} - D{N_h}(i) \cdot {L_{el}}}}{{{L_{eh}} - {L_{el}}}} $(13)

    View in Article

    $ {L}_{eh}=\frac{{\varepsilon }^{\prime }\cdot {\displaystyle {\int }_{{\lambda }_{1}}^{{\lambda }_{2}}R(\lambda )L(\lambda ,{T}_{h}){\rm{d}}\lambda }}{{\displaystyle {\int }_{{\lambda }_{1}}^{{\lambda }_{2}}R(\lambda ){\rm{d}}\lambda }} $(14)

    View in Article

    $ {L}_{el}=\frac{{\varepsilon }^{\prime }\cdot {\displaystyle {\int }_{{\lambda }_{1}}^{{\lambda }_{2}}R(\lambda )L(\lambda ,{T}_{l}){\rm{d}}\lambda }}{{\displaystyle {\int }_{{\lambda }_{1}}^{{\lambda }_{2}}R(\lambda ){\rm{d}}\lambda }} $(15)

    View in Article

    $ S(i,j) = ({G_c}(i,j) - C(i))/K(i) $(16)

    View in Article

    $ {G_c}(i,j) = G(i,j) + \Delta {G_d}(i) $(17)

    View in Article

    $ {L_{TOA}}(\lambda ) = [\varepsilon (\lambda ){L_{BB}}(\lambda ,{T_s}) + (1 - \varepsilon (\lambda ))L_{atm}^ \downarrow (\lambda )]{\tau _{atm}} + L_{atm}^ \uparrow (\lambda ) $(18)

    View in Article

    $ {L_s}(\lambda ) = \varepsilon (\lambda ){L_{BB}}(\lambda ,{T_s}) + (1 - \varepsilon (\lambda ))L_{atm}^ \downarrow (\lambda ) $(19)

    View in Article

    $ \varepsilon(\lambda)=\frac{L_{s}(\lambda)-L_{\text {atm }}^{\downarrow}(\lambda)}{L_{B B}\left(\lambda, T_{s}\right)-L_{\text {atm }}^{\downarrow}(\lambda)} $(20)

    View in Article

    $ {L_{band}} = {L_1} + {L_2} + {L_3} $(21)

    View in Article

    $ {L_1} = \int_{\Delta \lambda } {{L_b}(T,\lambda )} \cdot {\tau _a}(\lambda ) \cdot \varepsilon (\lambda ) \cdot {\rm{d}}\lambda \text{} $(22)

    View in Article

    $ {L_2} = \int_{\Delta \lambda } {{L_p} \uparrow (\lambda )} \cdot {\rm{d}}\lambda $(23)

    View in Article

    $ {L_3} = \int_{\Delta \lambda } {{L_p}} \downarrow (\lambda ) \cdot {\tau _a}(\lambda ) \cdot [1 - \varepsilon (\lambda )] \cdot {\rm {\rm{d}}}\lambda $(24)

    View in Article

    $ {L_{band}} = \int_{\Delta \lambda } {{L_b}(T,\lambda )} \cdot {\tau _a}(\lambda ) \cdot {\rm{d}}\lambda + \int_{\Delta \lambda } {{L_p} \uparrow (\lambda )} \cdot {\rm{d}}\lambda $(25)

    View in Article

    $ {L_{eq}} = \frac{{\displaystyle\int_{\Delta \lambda } {{L_{band}}R(\lambda ){\rm{d}}\lambda } }}{{\displaystyle\int_{\Delta \lambda } {R(\lambda ){\rm{d}}\lambda } }} $(26)

    View in Article

    $ L = a \times DC + b $(27)

    View in Article

    $ \sigma = \sqrt {\sigma _1^2 + \sigma _2^2 +\cdots+ \sigma _n^2} $(28)

    View in Article

    $ \left| {\frac{{\cos \left( {geo\_zen[or:leo\_zen]} \right)}}{{\cos \left( {leo\_zen} \right)}} - 1} \right| < \max \_zen $(29)

    View in Article

    $ {R_{LEO}} = \frac{{\displaystyle\int_\nu {{R_\nu }{\varPhi _\nu }{\rm{d}}\nu } }}{{\displaystyle\int_\nu {{\varPhi _\nu }{\rm{d}}\nu } }} $(30)

    View in Article

    $ Radianc{e_{eqI}} = \frac{{\displaystyle\int\limits_{\lambda 1}^{\lambda 2} {Radianc{e_I}(\lambda ) \times responc{e_I}(\lambda ){\rm{d}}\lambda } }}{{\displaystyle\int\limits_{\lambda 1}^{\lambda 2} {responc{e_I}(\lambda ){\rm{d}}\lambda } }} $(31)

    View in Article

    $ {L_{x}} = {a_0} + {a_1}×{L_1} + {a_2}×{L_2} + {a_3}×{L_3} + {a_4}×{L_4} $(32)

    View in Article

    $ STDV(ENV) < \max \_STDV $(33)

    View in Article

    $|MEAN(TARGET)MEAN(ENV)|×9STDV(ENV)<Gaussian $(34)

    View in Article

    $ \left| {\frac{1}{{{n^2}}}\sum\limits_{i = 1}^{{n^2}} {{R_i}} - M} \right| \leqslant \frac{S}{n}\frac{{N - n}}{{N - 1}}Gaussian\left( { = 3} \right) $(35)

    View in Article

    $ \hat y\left( x \right) = a + bx $(36)

    View in Article

    $ {\chi ^{_2}}\left( {a,b} \right) = {\sum\limits_{i = 1}^N {\left( {\frac{{{y_i} - a - b{x_i}}}{{{\sigma _i}}}} \right)} ^2} $(37)

    View in Article

    $ a = \frac{{\displaystyle\sum\limits_{i = 1}^N {\frac{{x_i^2}}{{\sigma _i^2}}} \displaystyle\sum\limits_{i = 1}^N {\frac{{y_i^{}}}{{\sigma _i^2}}} - \displaystyle\sum\limits_{i = 1}^N {\frac{{x_i^{}}}{{\sigma _i^2}}} \displaystyle\sum\limits_{i = 1}^N {\frac{{x_i^{}y_i^{}}}{{\sigma _i^2}}} }}{{\displaystyle\sum\limits_{i = 1}^N {\frac{1}{{\sigma _i^2}}} \displaystyle\sum\limits_{i = 1}^N {\frac{{x_i^2}}{{\sigma _i^2}}} - {{\left( {\displaystyle\sum\limits_{i = 1}^N {\frac{{x_i^{}}}{{\sigma _i^2}}} } \right)}^2}}} $()

    View in Article

    $ b = \frac{{\displaystyle\sum\limits_{i = 1}^N {\frac{1}{{\sigma _i^2}}} \displaystyle\sum\limits_{i = 1}^N {\frac{{x_i^{}y_i^{}}}{{\sigma _i^2}}} - \displaystyle\sum\limits_{i = 1}^N {\frac{{x_i^{}}}{{\sigma _i^2}}} \displaystyle\sum\limits_{i = 1}^N {\frac{{y_i^{}}}{{\sigma _i^2}}} }}{{\displaystyle\sum\limits_{i = 1}^N {\frac{1}{{\sigma _i^2}}} \displaystyle\sum\limits_{i = 1}^N {\frac{{x_i^2}}{{\sigma _i^2}}} - {{\left( {\displaystyle\sum\limits_{i = 1}^N {\frac{{x_i^{}}}{{\sigma _i^2}}} } \right)}^2}}} $(38)

    View in Article

    $ {\Delta _{ref}} = \sqrt {\frac{{{{\left( {{a_1}{\Delta _1}} \right)}^2} + \cdots + {{\left( {{a_i}{\Delta _i}} \right)}^2}}}{{a_1^2 + \cdots + a_i^2}}} = 0.507\;1\;{\rm{K}} $()

    View in Article

    $ \sqrt {0.5_{}^2 + 0.8_{}^2} = 0.94\;{\rm{K}} $()

    View in Article

    $ \sqrt {0.23_{}^2 + 1.2_{}^2} = 1.22\;{\rm{K}} $()

    View in Article

    Yuan Lv, Mingyu Cong, Yini Zhao, Kaiqing Niu, Ziwei Lu. Research on real-time absolute radiometric calibration technology of infrared cameras[J]. Infrared and Laser Engineering, 2022, 51(7): 20220395
    Download Citation