• Chinese Optics Letters
  • Vol. 22, Issue 10, 101203 (2024)
Xiaoli Liu, Jiajia Cui, Chaofan Feng, Qingyuan Tian..., Ruyue Cui, Yanting Zhao, Hongpeng Wu* and Lei Dong**|Show fewer author(s)
Author Affiliations
  • State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.3788/COL202422.101203 Cite this Article Set citation alerts
    Xiaoli Liu, Jiajia Cui, Chaofan Feng, Qingyuan Tian, Ruyue Cui, Yanting Zhao, Hongpeng Wu, Lei Dong, "Differential photoacoustic cell-based Fourier transform photoacoustic spectroscopy for background-free gas detection [Invited]," Chin. Opt. Lett. 22, 101203 (2024) Copy Citation Text show less
    References

    [1] C. B. Hirschmann, J. Uotila, S. Ojala et al. Fourier transform infrared photoacoustic multicomponent gas spectroscopy with optical cantilever detection. Appl. Spectrosc., 64, 293(2010).

    [2] J. Huang, G. Bekiaris, T. Fitamo et al. Prediction of biochemical methane potential of urban organic waste using Fourier transform mid-infrared photoacoustic spectroscopy and multivariate analysis. Sci. Total Environ., 790, 147959(2021).

    [3] C. B. Hirschmann, N. S. Koivikko, J. Raittila et al. FT-IR-cPAS—new photoacoustic measurement technique for analysis of hot gases: a case study on VOCs. Sensors, 11, 5270(2011).

    [4] J. F. McClelland, R. W. Jones, S. Luo et al. A Practical Guide to FTIR Photoacoustic Spectroscopy(1993).

    [5] L. X. Liu, A. Mandelis, A. Melnikov et al. Step-scan T-cell Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) for monitoring environmental air pollutants. Int. J. Thermophys., 37, 64(2016).

    [6] J. Karhu, T. Tomberg, F. Senna Vieira et al. Broadband photoacoustic spectroscopy of 14CH4 with a high-power mid-infrared optical frequency comb. Opt. Lett., 44, 1142(2019).

    [7] T. Mikkonen, C. Amiot, A. Aalto et al. Broadband cantilever-enhanced photoacoustic spectroscopy in the MIR-IR using a supercontinuum. Opt. Lett., 43, 5094(2018).

    [8] M. Zhang, B. Zhang, K. Chen et al. Miniaturized multi-pass cell based photoacoustic gas sensor for parts-per-billion level acetylene detection. Sens. Actuators A Phys., 308, 112013(2020).

    [9] L. X. Liu, H. T. Huan, A. Mandelis et al. Design and structural optimization of T-resonators for highly sensitive photoacoustic trace gas detection. Opt. Laser Technol., 148, 107695(2022).

    [10] L. X. Liu, A. Mandelis, H. T. Huan et al. Step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS): a spectral deconvolution method for weak absorber detection in the presence of strongly overlapping background absorptions. Opt. Lett., 42, 1424(2017).

    [11] Q. Huang, Y. Wei, J. S. Li. Simultaneous detection of multiple gases using multi-resonance photoacoustic spectroscopy. Sens. Actuators B Chem., 369, 132234(2022).

    [12] H. D. Zheng, L. Dong, A. Sampaolo et al. Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone. Appl. Phys. Lett., 109, 111103(2016).

    [13] X. K. Yin, H. P. Wu, L. Dong et al. Ppb-level SO2 photoacoustic sensors with a suppressed absorption–desorption effect by using a 7.41 µm external-cavity quantum cascade laser. ACS Sensors, 5, 549(2020).

    [14] H. D. Zheng, M. H. Lou, L. Dong et al. Compact photoacoustic module for methane detection incorporating interband cascade light emitting device. Opt. Express, 25, 16761(2017).

    [15] H. D. Zheng, Y. H. Liu, H. Y. Lin et al. Sub-ppb-level CH4 detection by exploiting a low-noise differential photoacoustic resonator with a room-temperature interband cascade laser. Opt. Express, 28, 19446(2020).

    [16] X. L. Liu, H. P. Wu, L. Dong. Methodology and applications of acousto-electric analogy in photoacoustic cell design for trace gas analysis. Photoacoustics, 30, 100475(2023).

    [17] L. X. Liu, A. Mandelis, H. T. Huan et al. Step-scan T cell-based differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) for detection of ambient air contaminants. Appl. Phys. B, 122, 268(2016).

    [18] A. Sampaolo, P. Patimisco, M. Giglio et al. Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy. Sensors, 16, 439(2016).

    [19] L. G. Xu, S. Zhou, N. W. Liu et al. Multigas sensing technique based on quartz crystal tuning fork-enhanced laser spectroscopy. Anal. Chem., 92, 14153(2020).

    [20] J. P. Wang, H. P. Wu, A. Sampaolo et al. Quartz-enhanced multiheterodyne resonant photoacoustic spectroscopy. Light Sci. Appl., 13, 77(2024).

    Xiaoli Liu, Jiajia Cui, Chaofan Feng, Qingyuan Tian, Ruyue Cui, Yanting Zhao, Hongpeng Wu, Lei Dong, "Differential photoacoustic cell-based Fourier transform photoacoustic spectroscopy for background-free gas detection [Invited]," Chin. Opt. Lett. 22, 101203 (2024)
    Download Citation