[1] B JI X, P WU Z, R ZHU Y. Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: understanding of its electrochemical properties.. Journal of Power Sources, 267, 888-900(2014).
[2] H LIU X, B WEN Z, B WU D. Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors.. Journal of Materials Chemistry A, 2, 11569-11573(2014).
[3] J CAO L, H LI Y, L QIAO. Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J. Mater. Chem. A, 2, 6540-6548(2014).
[4] M CARLEN, R KOTZ. Principles and applications of electrochemical capacitors. Electrochimica Acta, 45, 2483-2498(2000).
[5] C REN W, W WANG D, S WU Z. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Advanced Functional Materials, 20, 3595-3602(2010).
[6] G HU J, Q YANG, D YE X. Preparation and properties of NiO/AC asymmetric capacitor. Journal of Inorganic Materials, 29, 250-256(2014).
[7] B GAO, J ZHANG L, G ZHANG X. Pyrolysis preparation of nickel oxide and its electrochemical capacitance. Journal of Inorganic Materials, 26, 398-402(2011).
[8] M SAMO, A TROISI. Supercapacitors based on high surface area MoS2 and MoS2-Fe3O4 nanostructures supported on physical exfoliated graphite. Journal of Nanoscience and Nanotechnology, 17, 3735-3743(2017).
[9] H CHANG Y, Y HAN G, M XIAO Y. Internal tandem flexible and compressible electrochemical capacitor based on polypyrrole/ carbon fibers. Electrochimica Acta, 257, 335-344(2017).
[10] A MAIER M, M SAMPAIO D, R SURESH BABU. Binder- free polyaniline interconnected metal hexacyanoferrates nanocomposites (metal = Ni, Co) on carbon fibers for flexible supercapacitors. Journal of Materials Science: Materials in Electronics, 28, 17405-17413(2017).
[11] H MA Y, H PANG, Z WEI C. Nickel phosphite superstructures assembled by nanotubes: original application for effective electrode materials of supercapacitors. ChemPlusChem, 78, 546-553(2013).
[12] B LIU X, P WU Z, H YIN Y. Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors. Chemical Engineering Journal, 323, 330-339(2017).
[13] X GU Z, Q HU Q, T ZHENG X. Three-dimensional Co3O4@NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances. Chemical Engineering Journal, 304, 223-231(2016).
[14] J XU, Y ZHANG, Y ZHENG Y. NiCo2S4@NiMoO4 core-shell heterostructure nanotube arrays grown on Ni foam as a binder-free electrode displayed high electrochemical performance with high capacity. Nanoscale Res. Lett., 12, 412-420(2017).
[15] Q WEN J, L YAN M, D YAO Y. Construction of a hierarchical NiCo2S4@PPy core-shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor. ACS Appl. Mater. Interfaces, 8, 24525-24535(2016).
[16] B JI X, B WU Z, R ZHU Y. NiCo2S4 hollow microsphere decorated by acetylene black for high-performance asymmetric supercapacitor.. Electrochimica Acta, 186, 562-571(2015).
[17] F SHEN L, J WANG, Y XU G. NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Advanced Energy Materials, 5(2015).
[18] N GONG Y, L LI D, X PAN C. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors. Sci. Rep., 6, 29788-29794(2016).
[19] B KONG L, J MA X, B ZHANG W. Design and synthesis of 3D Co3O4@MMoO4(M=Ni, Co) nanocomposites as high-performance supercapacitor electrodes. Electrochimica Acta, 130, 660-669(2014).
[20] J JIANG J, Z WAN H, W YU J. NiCo2S4 porous nanotubes synthesis
[21] , Y HE X, M LI R. Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors.. Chemical Engineering Journal, 334, 1573-1583(2018).
[22] M CHEN Y, N HE Z, X ZHANG G. Surfactant dependence of nanostructured NiCo2S4 films on Ni foam for superior electrochemical performance. Journal of Inorganic Materials, 33, 289-294(2018).
[23] H GONG, Z TANG, H TANG C. A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Advanced Functional Materials, 22, 1272-1278(2012).
[24] N CHEN R, L LIU, S ZHOU J. High-performance nickel- cobalt-boron material for an asymmetric supercapacitor with an ultrahigh energy density.. Journal of Power Sources, 341, 75-82(2017).
[25] Y KIM H, M PARK, F ZHANG Y. Moderated surface defects of Ni particles encapsulated with NiO nanofibers as supercapacitor with high capacitance and energy density. J. Colloid Interface Sci., 500, 155-163(2017).
[26] , R HOU L, H HUA. Anion-exchange formation of hollow NiCo2S4 nanoboxes from mesocrystalline nickel cobalt carbonate nanocubes towards enhanced pseudocapacitive properties.. ChemPlusChem, 81, 557-563(2016).
[27] Y FENG, H YUAN X, C ZHENG. Core-shell structure ultrathin NiCo2S4@graphene as high performance positive electrode for hybrid supercapacitors. Journal of Materials Chemistry A, 6, 5856-5861(2018).
[28] F LI G, P WANG F, Q ZHOU Q. One-step hydrothermal synthesis of sandwich-type NiCo2S4 @reduced graphene oxide composite as active electrode material for supercapacitors. Applied Surface Science, 425, 180-187(2017).