• Ultrafast Science
  • Vol. 3, Issue 1, 0043 (2023)
Tomoyoshi Inoue1、2, Takashi Kakue3, Kenzo Nishio4, Toshihiro Kubota5, Osamu Matoba6、7, and Yasuhiro Awatsuji8、*
Author Affiliations
  • 1Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan.
  • 2Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.
  • 3Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
  • 4Advanced Technology Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
  • 5Kubota Holography Laboratory Corporation, Nishihata 34-1-609, Ogura-cho, Uji, Kyoto 611-0042, Japan.
  • 6Graduate School of System Informatics, Department of Systems Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan.
  • 7Center of Optical Scattering Image Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan.
  • 8Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan.
  • show less
    DOI: 10.34133/ultrafastscience.0043 Cite this Article
    Tomoyoshi Inoue, Takashi Kakue, Kenzo Nishio, Toshihiro Kubota, Osamu Matoba, Yasuhiro Awatsuji. Recent Advances in Imaging of Light Propagation with Light-in-Flight Recording by Holography[J]. Ultrafast Science, 2023, 3(1): 0043 Copy Citation Text show less
    References

    [1] Matlis NH, Reed S, Bulanov SS, Chvykov V, Kalintchenko G, Matsuoka T, Rousseau P, Yanovsky V, Maksimchuk A, Kalmykov S, et al. Snapshots of laser wakefields. Nat Phys. 2006;2:749–753.

    [2] Goda K, Tsia KK, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature. 2009;458:1145–1149.

    [3] Rapp S, Kaiser M, Schmidt M, Huber HP. Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation. Opt Express. 2016;24:17572–17592.

    [4] Wang S, Hanson RK. Ultra-sensitive spectroscopy of OH radical in high-temperature transient reactions. Opt Lett. 2018;43:3518–3521.

    [5] Maezawa Y, Hosokawa Y, Okano K, Matsubara M, Masuhara H. In situ observation of cell-detachment process initiated by femtosecond laser-induced stress wave. Appl Phys A Mater Sci Process. 2010;101:127–131.

    [6] Liang J, Wang LV. Single-shot ultrafast optical imaging. Optica. 2018;5:1113–1127.

    [7] Ge B, Zhang Q, Zhang R, Lin J-T, Tseng P-H, Chang C-W, Dong C-Y, Zhou R, Yaqoob Z, Bischofberger I, et al. Single-shot quantitative polarization imaging of complex birefringent structure dynamics. ACS Photonics. 2021;8:3440–3447.

    [8] Qi D, Zhang S, Yang C, He Y, Cao F, Yao J, Ding P, Gao L, Jia T, Liang J, et al. Single-shot compressed ultrafast photography: A review. Adv Photonics. 2020;2: 014003.

    [9] Liu X, Skripka A, Lai Y, Jiang C, Liu J, Vetrone F, Liang J. Fast wide-field upconversion luminescence lifetime thermometry enabled by single-shot compressed ultrahigh-speed imaging. Nat Commun. 2021;12:6401.

    [10] Barty A, Boutet S, Bogan MJ, Hau-Riege S, Marchesini S, Sokolowski-Tinten K, Stojanovic N, Tobey R, Ehrke H, Cavalleri A, et al. Ultrafast single-shot diffraction imaging of nanoscale dynamics. Nat Photonics. 2008;2:415–419.

    [11] Brown SB, Gleason AE, Galtier E, Higginbotham A, Arnold B, Fry A, Granados E, Hashim A, Schroer CG, Schropp A, et al. Direct imaging of ultrafast lattice dynamics. Sci Adv. 2019;5:eaau8044.

    [12] Clegg B. The man who stopped time: The illuminating story of Eadweard Muybridge—Pioneer photographer, father of the motion picture, murderer. Washington (DC): Joseph Henry Press; 2007.

    [13] Yao Y, He Y, Qi D, Cao F, Yao J, Ding P, Jin C, Wu X, Deng L, Jia T, et al. Single-shot real-time ultrafast imaging of femtosecond laser fabrication. ACS Photonics. 2021;8:738–744.

    [14] Mikami H, Harmon J, Kobayashi H, Hamad S, Wang Y, Iwata O, Suzuki K, Ito T, Aisaka Y, Kutsuna N, et al. Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime limit. Optica. 2018;5:117.

    [15] Li D-U, Arlt J, Richardson J, Walker R, Buts A, Stoppa D, Charbon E, Henderson R. Real-time fluorescence lifetime imaging system with a 32 × 32 013μm CMOS low dark-count single-photon avalanche diode array. Opt Express. 2010;18:10257–10269.

    [16] Zhu C, Liu Q. Review of Monte Carlo modeling of light transport in tissues. J Biomed Opt. 2013;18: 050902.

    [17] Wang X, Wang LV, Sun C-W, Yang C-C. Polarized light propagation through scattering media: Time-resolved Monte Carlo simulations and experiments. J Biomed Opt. 2003;8:608.

    [18] Leino AA, Pulkkinen A, Tarvainen T. ValoMC: A Monte Carlo software and MATLAB toolbox for simulating light transport in biological tissue. OSA Contin. 2019;2:957–972.

    [19] Gariepy G, Krstajić N, Henderson R, Li C, Thomson RR, Buller GS, Heshmat B, Raskar R, Leach J, Faccio D. Single-photon sensitive light-in-fight imaging. Nat Commun. 2015;6:6021.

    [20] Warburton R, Aniculaesei C, Clerici M, Altmann Y, Gariepy G, McCracken R, Reid D, McLaughlin S, Petrovich M, Hayes J, et al. Observation of laser pulse propagation in optical fibers with a SPAD camera. Sci Rep. 2017;7:43302.

    [21] Etoh TG, Okinaka T, Takano Y, Takehara K, Nakano H, Shimonomura K, Ando T, Ngo N, Kamakura Y, Dao VTS, et al. Light-in-flight imaging by a silicon image sensor: Toward the theoretical highest frame rate. Sensors. 2019;19:2247.

    [22] Etoh T, Nguyen A, Kamakura Y, Shimonomura K, Le T,Mori N. The theoretical highest frame rate of silicon image sensors. Sensors. 2017;17:483.

    [23] Gigan S. Optical microscopy aims deep. Nat Photonics. 2017;11:14–16.

    [24] Yoon S, Kim M, Jang M, Choi Y, Choi W, Kang S, Choi W. Deep optical imaging within complex scattering media. Nat Rev Phys. 2020;2:141–158.

    [25] Yanik MF, Cinar H, Cinar HN, Chisholm AD, Jin Y, Ben-Yakar A. Functional regeneration after laser axotomy. Nature. 2004;432:822.

    [26] Gabor D. A new microscopic principle. Nature. 1948;161:777–778.

    [27] Abramson N. Light-in-flight recording by holography. Opt Lett. 1978;3:121–123.

    [28] Abramson N. Light-in-flight recording: High-speed holographic motion pictures of ultrafast phenomena. Appl Opt. 1983;22:215–232.

    [29] Abramson N. Optical fiber tested using light-in-flight recording by holography. Appl Opt. 1987;26:4657–4659.

    [30] Abramson N. Time reconstructions in light-in-flight recording by holography. Appl Opt. 1991;30:1242–1252.

    [31] Abramson NH, Bjelkhagen HI, Caulfield HJ. The ABCs of space-time-coherence recording in holography. J Mod Opt. 1991;38:1399–1406.

    [32] Abramson N, Spears KG. Single pulse light-in-flight recording by holography. Appl Opt. 1989;28:1834–1841.

    [33] Denisyuk YN, Staselko DI. Light-in-flight recording: High-speed holographic motion pictures of ultrafast phenomena: Comment. Appl Opt. 1992;31:1682–1684.

    [34] Zheng Y, Sun M-J, Wang Z-G, Faccio D. Computational 4D imaging of light-in-flight with relativistic effects. Photonics Res. 2020;8:1072–1078.

    [35] Morimoto K, Wu M-L, Ardelean A, Charbon E. Superluminal motion-assisted four-dimensional light-in-flight imaging. Phys Rev X. 2021;11: 011005.

    [36] Morland I, Zhu F, Martín GM, Gyongy I, Leach J. Intensity-corrected 4D light-in-flight imaging. Opt Express. 2021;29:22504–22516.

    [37] Wilson K, Little B, Gariepy G, Henderson R, Howell J, Faccio D. Slow light in flight imaging. Phys Rev A. 2017;95: 023830.

    [38] Quercioli F, Molesini G. White light-in-flight holography. Appl Opt. 1985;24:3406–3415.

    [39] Nilsson B, Carlsson TE. Direct three-dimensional shape measurement by digital light-in-flight holography. Appl Opt. 1998;37:7954–7959.

    [40] Komatsu A, Awatsuji Y, Kubota T. Dependence of reconstructed image characteristics on the observation condition in light-in-flight recording by holography. J Opt Soc Am A. 2005;22:1678–1682.

    [41] Hinrichs H, Hinsch KD, Kickstein J, Böhmer M. Light-in-flight holography for visualization and velocimetry in three-dimensional flows. Opt Lett. 1997;22:828–830.

    [42] Mendlovic D, Avishay N. Three-dimensional shape recognition using computer-generated holograms and temporal light-in-flight technique. Appl Opt. 1995;34:6621–6625.

    [43] Kakue T, Takada N, Shimobaba T, Ito T. Hologram generation of light-in-flight recording by holography applying the 2D-FDTD method to simulate the behavior of ultrashort pulsed light. OSA Contin. 2021;4:437–454.

    [44] Papazoglou DG, Tzortzakis S. In-line holography for the characterization of ultrafast laser filamentation in transparent media. Appl Phys Lett. 2008;93: 041120.

    [45] Yue Q-Y, Cheng Z-J, Han L, Yang Y, Guo C-S. One-shot time-resolved holographic polarization microscopy for imaging laser-induced ultrafast phenomena. Opt Express. 2017;25:14182–14197.

    [46] Kakue T, Yonesaka R, Tahara T, Awatsuji Y, Nishio K, Ura S, Kubota T, Matoba O. High-speed phase imaging by parallel phase-shifting digital holography. Opt Lett. 2011;36:4131–4133.

    [47] Takase Y, Shimizu K, Mochida S, Inoue T, Nishio K, Rajput SK, Matoba O, Xia P, Awatsuji Y. High-speed imaging of the sound field by parallel phase-shifting digital holography. Appl Opt. 2021;60:A179–A187.

    [48] Rajput SK, Matoba O, Takase Y, Inoue T, Itaya K, Kumar M, Quan X, Xia P, Awatsuji Y. Multimodal sound field imaging using digital holography invited. Appl Opt. 2021;60:B49–B58.

    [49] Kumar M, Matoba O, Quan X, Rajput SK, Awatsuji Y, Tamada Y. Single-shot common-path off-axis digital holography: Applications in bioimaging and optical metrology. Appl Opt. 2021;60:A195–A204.

    [50] Balasubramani V, Kujawińska M, Allier C, Anand V, Cheng C-J, Depeursinge C, Hai N, Juodkazis S, Kalkman J, Kuś A, et al. Roadmap on digital holography-based quantitative phase imaging. J Imaging. 2021;7:252.

    [51] Marquet P, Depeursinge C, Magistretti PJ. Review of quantitative phase-digital holographic microscopy: Promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders. Neurophotonics. 2014;1: 020901.

    [52] Inoue T, Matsunaka A, Funahashi A, Okuda T, Nishio K, Awatsuji Y. Spatiotemporal observations of light propagation in multiple polarization states. Opt Lett. 2019;44:2069–2072.

    [53] Sasaki M, Matsunaka A, Inoue T, Nishio K, Awatsuji Y. Motion-picture recording of ultrafast behavior of polarized light incident at Brewster’s angle. Sci Rep. 2020;10:7638.

    [54] Sawashima Y, Yamanaka D, Takamoto I, Matsunaka A, Awatsuji Y, Nishio K. Extending recordable time of light-in-flight recording by holography with double reference light pulses. Opt Lett. 2018;43:5146–5149.

    [55] Tahara T, Ito K, Fujii M, Kakue T, Shimozato Y, Awatsuji Y, Nishio K, Ura S, Kubota T, Matoba O. Experimental demonstration of parallel two-step phase-shifting digital holography. Opt Express. 2010;18:18975–18980.

    [56] Sawashima Y, Takamoto I, Nishio K, Awatsuji Y. Recordable-time extension of digital light-in-flight recording by holography using a polarization-imaging camera. IEEE J Quantum Electron. 2020;57:8600108.

    [57] Inoue T, Nagao K, Matsunaka A, Kokubu T, Nishio K, Kubota T, Awatsuji Y. Motion-picture recording of light pulses with Ultrashort time difference by polarization camera. IEEE Photon Technol Lett. 2022;34:931–934.

    [58] Inoue T, Kakue T, Nishio K, Kubota T, Awatsuji Y. Multiple motion picture recording in light-in-flight recording by holography with an angular multiplexing technique. J Opt Soc Am A. 2023;40:370–377.

    [59] Tahara T, Ito Y, Lee Y, Xia P, Inoue J, Awatsuji Y, Nishio K, Ura S, Kubota T, Matoba O. Multiwavelength parallel phase-shifting digital holography using angular multiplexing. Opt Lett. 2013;38:2789.

    [60] Yuan C, Zhai H, Liu H. Angular multiplexing in pulsed digital holography for aperture synthesis. Opt Lett. 2013;33:2789–2791.

    [61] Anzai W, Kakue T, Shimobaba T, Ito T. Temporal super-resolution high-speed holographic video recording based on switching reference lights and angular multiplexing in off-axis digital holography. Opt Lett. 2022;47:3151–3154.

    [62] Osellame R, Hoekstra HJWM, Cerullo G, Pollnau M. Femtosecond laser microstructuring: An enabling tool for optofluidic lab-on-chips. Laser Photonics Rev. 2011;5:442–463.

    [63] Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature. 2002;418:159–162.

    [64] Zoumi A, Yeh A, Tromberg BJ. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA. 2002;99:11014–11019.

    [65] Zhang D, Gao Q, Li B, Liu J, Tian Y, Li Z. Femtosecond laser-induced plasma spectroscopy for combustion diagnostics in premixed ammonia/air flames. Appl Opt. 2019;58:7810–7816.

    [66] Moon J, Yoon S, Lim Y-S, Choi W. Single-shot imaging of microscopic dynamic scenes at 5 THz frame rates by time and spatial frequency multiplexing. Opt Express. 2020;28:4463–4474.

    [67] Wang X, Yan L, Si J, Matsuo S, Xu H, Hou X. High-frame-rate observation of single femtosecond laser pulse propagation in fused silica using an echelon and optical polarigraphy technique. Appl Opt. 2014;53:8395–8399.

    [68] Inoue T, Aoyama T, Sawashima Y, Nishio K, Kubota T, Awatsuji Y. Motion picture of magnified light pulse propagation with extending recordable time of digital light-in-flight holography. Appl Opt. 2022;61:B206–B214.

    [69] Aval J, Alfalou A, Brosseau C. Polarization and hyperspectral imaging matter for newly emerging perspectives in optical image processing: Guest editorial. Adv Opt Photonics. 2019;11:ED10–ED14.

    [70] Colomb T, Dahlgren P, Beghuin D, Cuche E, Marquet P, Depeursinge C. Polarization imaging by use of digital holography. Appl Opt. 2002;41:27–37.

    [71] Garcia M, Edmiston C, Marinov R, Vail A, Gruev V. Bio-inspired color-polarization imager for real-time in situ imaging. Optica. 2017;4:1263.

    [72] Inoue T, Sanpei A, Kawade Y, Suzuki M, Ochiai R, Awatsuji Y. Identification of pollens from polymer particles levitating in an RF plasma by the polarization imaging method. IEEE Trans Plasma Sci. 2021;49:2967–2971.

    [73] Lagarde D, Bouet L, Marie X, Zhu CR, Liu BL, Amand T, Tan PH, Urbaszek B. Carrier and polarization dynamics in monolayer MoS2. Phys Rev Lett. 2014;112:047401.

    [74] Prokhorenko VI, Nagy AM, Waschuk SA, Brown LS, Birge RR, Miller RJD. Coherent control of retinal isomerization in bacteriorhodopsin. Science. 2006;313:1257–1261.

    [75] Mosk AP, Lagendijk A, Lerosey G, Fink M. Controlling waves in space and time for imaging and focusing in complex media. Nat Photonics. 2012;6:283–292.

    [76] Badon A, Barolle V, Irsch K, Boccara AC, Fink M, Aubry A. Distortion matrix concept for deep optical imaging in scattering media. Sci Adv. 2020;6:eaay7170.

    [77] Bertolotti J, van Putten EG, Blum C, Lagendijk A, Vos WL, Mosk AP. Non-invasive imaging through opaque scattering layers. Nature. 2012;491:232–234.

    [78] Kakue T, Tosa K, Yuasa J, Tahara T, Awatsuji Y, Nishio K, Ura S, Kubota T. Digital light-in-flight recording by holography by use of a femtosecond pulsed laser. IEEE J Sel Top Quantum Electron. 2012;18:479–485.

    [79] Kakue T, Yuasa J, Fujii M, Xia P, Tahara T, Awatsuji Y, Nishio K, Ura S, Kubota T, Matoba O. Light-in-flight recording by parallel phase-shifting digital holography. Appl Phys Express. 2013;6: 092501.

    [80] Rabal H, Pomarico J, Arizaga R. Light-in-flight digital holography display. Appl Opt. 1994;33:4358–4360.

    [81] Inoue T, Sasaki M, Nishio K, Kubota T, Awatsuji Y. Influence of the lateral size of a hologram on the reconstructed image in digital light-in-flight recording by holography. Appl Opt. 2021;60:B59–B64.

    [82] Inoue T, Junpei Y, Itoh S, Okuda T, Funahashi A, Takimoto T, Kakue T, Nishio K, Matoba O, Awatsuji Y. Spatiotemporal observation of light propagation in a three-dimensional scattering medium. Sci Rep. 2021;11:21890.

    [83] Kakue T, Makino M, Aihara M, Kuzuhara A, Awatsuji Y, Nishio K, Ura S, Kubota T. Light-in-flight recording by holographic microscope and its numerical verification. Jpn J Appl Phys. 2009;48:09LD01.

    [84] Kakue T, Inoue T, Shimobaba T, Ito T, Awatsuji Y. FFT-based simulation of the hologram-recording process for light-in-flight recording by holography. J Opt Soc Am A. 2022;39:A7–A14.

    [85] Kakue T, Aihara M, Takimoto T, Awatsuji Y, Nishio K, Ura S, Kubota T. Moving picture recording and observation of visible femtosecond light pulse propagation. Jpn J Appl Phys. 2011;50: 050205.

    [86] Ehn A, Bood J, Li Z, Berrocal E, Aldén M, Kristensson E. FRAME: Femtosecond videography for atomic and molecular dynamics. Light Sci Appl. 2017;6: e17045.

    [87] Suzuki T, Isa F, Fujii L, Hirosawa K, Nakagawa K, Goda K, Sakuma I, Kannari F. Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering. Opt Express. 2015;23:30512–30522.

    [88] Nakagawa K, Iwasaki A, Oishi Y, Horisaki R, Tsukamoto A, Nakamura A, Hirosawa K, Liao H, Ushida T, Goda K, et al. Sequentially timed all-optical mapping photography (STAMP). Nat Photonics. 2014;8:695–700.

    [89] Wang P, Liang J, Wang LV. Single-shot ultrafast imaging attaining 70 trillion frames per second. Nat Commun. 2020;11:2091.

    [90] Hanzard P-H, Godin T, Idlahcen S, Rozé C, Hideur A. Real-time tracking of single shockwaves via amplified time-stretch imaging. Appl Phys Lett. 2018;112: 161106.

    [91] Zhao X, Shin YC. Laser–plasma interaction and plasma enhancement by ultrashort double-pulse ablation. Appl Phys B Lasers Opt. 2015;120:81–87.

    [92] Yamamoto S, Takimoto T, Tosa K, Kakue T, Awatsuji Y, Nishio K, Ura S, Kubota T. Moving picture recording and observation of femtosecond light pulse propagation using a rewritable holographic material. Nucl Instrum Methods Phys Res A. 2011;646:200–203.

    [93] Inoue T, Sasaki M, Nishio K, Kubota T, Awatsuji Y. Numerical analysis of reconstructed image of light-in-flight recording by holography with a magnifying optical system. Appl Phys B Lasers Opt. 2022;128:53.

    [94] Inoue T, Nagao K, Nishio K, Kubota T, Awatsuji Y. Ultrafast double motion-picture recording technique for propagating light pulses with an ultrashort time difference. Opt Lett. 2022;47:3407–3410.

    Tomoyoshi Inoue, Takashi Kakue, Kenzo Nishio, Toshihiro Kubota, Osamu Matoba, Yasuhiro Awatsuji. Recent Advances in Imaging of Light Propagation with Light-in-Flight Recording by Holography[J]. Ultrafast Science, 2023, 3(1): 0043
    Download Citation