[1] Matlis NH, Reed S, Bulanov SS, Chvykov V, Kalintchenko G, Matsuoka T, Rousseau P, Yanovsky V, Maksimchuk A, Kalmykov S, et al. Snapshots of laser wakefields. Nat Phys. 2006;2:749–753.
[3] Rapp S, Kaiser M, Schmidt M, Huber HP. Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation. Opt Express. 2016;24:17572–17592.
[4] Wang S, Hanson RK. Ultra-sensitive spectroscopy of OH radical in high-temperature transient reactions. Opt Lett. 2018;43:3518–3521.
[5] Maezawa Y, Hosokawa Y, Okano K, Matsubara M, Masuhara H. In situ observation of cell-detachment process initiated by femtosecond laser-induced stress wave. Appl Phys A Mater Sci Process. 2010;101:127–131.
[6] Liang J, Wang LV. Single-shot ultrafast optical imaging. Optica. 2018;5:1113–1127.
[8] Qi D, Zhang S, Yang C, He Y, Cao F, Yao J, Ding P, Gao L, Jia T, Liang J, et al. Single-shot compressed ultrafast photography: A review. Adv Photonics. 2020;2: 014003.
[9] Liu X, Skripka A, Lai Y, Jiang C, Liu J, Vetrone F, Liang J. Fast wide-field upconversion luminescence lifetime thermometry enabled by single-shot compressed ultrahigh-speed imaging. Nat Commun. 2021;12:6401.
[10] Barty A, Boutet S, Bogan MJ, Hau-Riege S, Marchesini S, Sokolowski-Tinten K, Stojanovic N, Tobey R, Ehrke H, Cavalleri A, et al. Ultrafast single-shot diffraction imaging of nanoscale dynamics. Nat Photonics. 2008;2:415–419.
[12] Clegg B. The man who stopped time: The illuminating story of Eadweard Muybridge—Pioneer photographer, father of the motion picture, murderer. Washington (DC): Joseph Henry Press; 2007.
[13] Yao Y, He Y, Qi D, Cao F, Yao J, Ding P, Jin C, Wu X, Deng L, Jia T, et al. Single-shot real-time ultrafast imaging of femtosecond laser fabrication. ACS Photonics. 2021;8:738–744.
[15] Li D-U, Arlt J, Richardson J, Walker R, Buts A, Stoppa D, Charbon E, Henderson R. Real-time fluorescence lifetime imaging system with a 32 × 32 013μm CMOS low dark-count single-photon avalanche diode array. Opt Express. 2010;18:10257–10269.
[16] Zhu C, Liu Q. Review of Monte Carlo modeling of light transport in tissues. J Biomed Opt. 2013;18: 050902.
[17] Wang X, Wang LV, Sun C-W, Yang C-C. Polarized light propagation through scattering media: Time-resolved Monte Carlo simulations and experiments. J Biomed Opt. 2003;8:608.
[18] Leino AA, Pulkkinen A, Tarvainen T. ValoMC: A Monte Carlo software and MATLAB toolbox for simulating light transport in biological tissue. OSA Contin. 2019;2:957–972.
[20] Warburton R, Aniculaesei C, Clerici M, Altmann Y, Gariepy G, McCracken R, Reid D, McLaughlin S, Petrovich M, Hayes J, et al. Observation of laser pulse propagation in optical fibers with a SPAD camera. Sci Rep. 2017;7:43302.
[21] Etoh TG, Okinaka T, Takano Y, Takehara K, Nakano H, Shimonomura K, Ando T, Ngo N, Kamakura Y, Dao VTS, et al. Light-in-flight imaging by a silicon image sensor: Toward the theoretical highest frame rate. Sensors. 2019;19:2247.
[22] Etoh T, Nguyen A, Kamakura Y, Shimonomura K, Le T,Mori N. The theoretical highest frame rate of silicon image sensors. Sensors. 2017;17:483.
[23] Gigan S. Optical microscopy aims deep. Nat Photonics. 2017;11:14–16.
[26] Gabor D. A new microscopic principle. Nature. 1948;161:777–778.
[27] Abramson N. Light-in-flight recording by holography. Opt Lett. 1978;3:121–123.
[28] Abramson N. Light-in-flight recording: High-speed holographic motion pictures of ultrafast phenomena. Appl Opt. 1983;22:215–232.
[29] Abramson N. Optical fiber tested using light-in-flight recording by holography. Appl Opt. 1987;26:4657–4659.
[30] Abramson N. Time reconstructions in light-in-flight recording by holography. Appl Opt. 1991;30:1242–1252.
[31] Abramson NH, Bjelkhagen HI, Caulfield HJ. The ABCs of space-time-coherence recording in holography. J Mod Opt. 1991;38:1399–1406.
[32] Abramson N, Spears KG. Single pulse light-in-flight recording by holography. Appl Opt. 1989;28:1834–1841.
[33] Denisyuk YN, Staselko DI. Light-in-flight recording: High-speed holographic motion pictures of ultrafast phenomena: Comment. Appl Opt. 1992;31:1682–1684.
[35] Morimoto K, Wu M-L, Ardelean A, Charbon E. Superluminal motion-assisted four-dimensional light-in-flight imaging. Phys Rev X. 2021;11: 011005.
[37] Wilson K, Little B, Gariepy G, Henderson R, Howell J, Faccio D. Slow light in flight imaging. Phys Rev A. 2017;95: 023830.
[38] Quercioli F, Molesini G. White light-in-flight holography. Appl Opt. 1985;24:3406–3415.
[39] Nilsson B, Carlsson TE. Direct three-dimensional shape measurement by digital light-in-flight holography. Appl Opt. 1998;37:7954–7959.
[41] Hinrichs H, Hinsch KD, Kickstein J, Böhmer M. Light-in-flight holography for visualization and velocimetry in three-dimensional flows. Opt Lett. 1997;22:828–830.
[42] Mendlovic D, Avishay N. Three-dimensional shape recognition using computer-generated holograms and temporal light-in-flight technique. Appl Opt. 1995;34:6621–6625.
[43] Kakue T, Takada N, Shimobaba T, Ito T. Hologram generation of light-in-flight recording by holography applying the 2D-FDTD method to simulate the behavior of ultrashort pulsed light. OSA Contin. 2021;4:437–454.
[44] Papazoglou DG, Tzortzakis S. In-line holography for the characterization of ultrafast laser filamentation in transparent media. Appl Phys Lett. 2008;93: 041120.
[46] Kakue T, Yonesaka R, Tahara T, Awatsuji Y, Nishio K, Ura S, Kubota T, Matoba O. High-speed phase imaging by parallel phase-shifting digital holography. Opt Lett. 2011;36:4131–4133.
[47] Takase Y, Shimizu K, Mochida S, Inoue T, Nishio K, Rajput SK, Matoba O, Xia P, Awatsuji Y. High-speed imaging of the sound field by parallel phase-shifting digital holography. Appl Opt. 2021;60:A179–A187.
[48] Rajput SK, Matoba O, Takase Y, Inoue T, Itaya K, Kumar M, Quan X, Xia P, Awatsuji Y. Multimodal sound field imaging using digital holography invited. Appl Opt. 2021;60:B49–B58.
[49] Kumar M, Matoba O, Quan X, Rajput SK, Awatsuji Y, Tamada Y. Single-shot common-path off-axis digital holography: Applications in bioimaging and optical metrology. Appl Opt. 2021;60:A195–A204.
[53] Sasaki M, Matsunaka A, Inoue T, Nishio K, Awatsuji Y. Motion-picture recording of ultrafast behavior of polarized light incident at Brewster’s angle. Sci Rep. 2020;10:7638.
[54] Sawashima Y, Yamanaka D, Takamoto I, Matsunaka A, Awatsuji Y, Nishio K. Extending recordable time of light-in-flight recording by holography with double reference light pulses. Opt Lett. 2018;43:5146–5149.
[55] Tahara T, Ito K, Fujii M, Kakue T, Shimozato Y, Awatsuji Y, Nishio K, Ura S, Kubota T, Matoba O. Experimental demonstration of parallel two-step phase-shifting digital holography. Opt Express. 2010;18:18975–18980.
[56] Sawashima Y, Takamoto I, Nishio K, Awatsuji Y. Recordable-time extension of digital light-in-flight recording by holography using a polarization-imaging camera. IEEE J Quantum Electron. 2020;57:8600108.
[57] Inoue T, Nagao K, Matsunaka A, Kokubu T, Nishio K, Kubota T, Awatsuji Y. Motion-picture recording of light pulses with Ultrashort time difference by polarization camera. IEEE Photon Technol Lett. 2022;34:931–934.
[59] Tahara T, Ito Y, Lee Y, Xia P, Inoue J, Awatsuji Y, Nishio K, Ura S, Kubota T, Matoba O. Multiwavelength parallel phase-shifting digital holography using angular multiplexing. Opt Lett. 2013;38:2789.
[60] Yuan C, Zhai H, Liu H. Angular multiplexing in pulsed digital holography for aperture synthesis. Opt Lett. 2013;33:2789–2791.
[61] Anzai W, Kakue T, Shimobaba T, Ito T. Temporal super-resolution high-speed holographic video recording based on switching reference lights and angular multiplexing in off-axis digital holography. Opt Lett. 2022;47:3151–3154.
[62] Osellame R, Hoekstra HJWM, Cerullo G, Pollnau M. Femtosecond laser microstructuring: An enabling tool for optofluidic lab-on-chips. Laser Photonics Rev. 2011;5:442–463.
[64] Zoumi A, Yeh A, Tromberg BJ. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA. 2002;99:11014–11019.
[65] Zhang D, Gao Q, Li B, Liu J, Tian Y, Li Z. Femtosecond laser-induced plasma spectroscopy for combustion diagnostics in premixed ammonia/air flames. Appl Opt. 2019;58:7810–7816.
[69] Aval J, Alfalou A, Brosseau C. Polarization and hyperspectral imaging matter for newly emerging perspectives in optical image processing: Guest editorial. Adv Opt Photonics. 2019;11:ED10–ED14.
[70] Colomb T, Dahlgren P, Beghuin D, Cuche E, Marquet P, Depeursinge C. Polarization imaging by use of digital holography. Appl Opt. 2002;41:27–37.
[79] Kakue T, Yuasa J, Fujii M, Xia P, Tahara T, Awatsuji Y, Nishio K, Ura S, Kubota T, Matoba O. Light-in-flight recording by parallel phase-shifting digital holography. Appl Phys Express. 2013;6: 092501.
[80] Rabal H, Pomarico J, Arizaga R. Light-in-flight digital holography display. Appl Opt. 1994;33:4358–4360.
[81] Inoue T, Sasaki M, Nishio K, Kubota T, Awatsuji Y. Influence of the lateral size of a hologram on the reconstructed image in digital light-in-flight recording by holography. Appl Opt. 2021;60:B59–B64.
[82] Inoue T, Junpei Y, Itoh S, Okuda T, Funahashi A, Takimoto T, Kakue T, Nishio K, Matoba O, Awatsuji Y. Spatiotemporal observation of light propagation in a three-dimensional scattering medium. Sci Rep. 2021;11:21890.
[83] Kakue T, Makino M, Aihara M, Kuzuhara A, Awatsuji Y, Nishio K, Ura S, Kubota T. Light-in-flight recording by holographic microscope and its numerical verification. Jpn J Appl Phys. 2009;48:09LD01.
[84] Kakue T, Inoue T, Shimobaba T, Ito T, Awatsuji Y. FFT-based simulation of the hologram-recording process for light-in-flight recording by holography. J Opt Soc Am A. 2022;39:A7–A14.
[85] Kakue T, Aihara M, Takimoto T, Awatsuji Y, Nishio K, Ura S, Kubota T. Moving picture recording and observation of visible femtosecond light pulse propagation. Jpn J Appl Phys. 2011;50: 050205.
[86] Ehn A, Bood J, Li Z, Berrocal E, Aldén M, Kristensson E. FRAME: Femtosecond videography for atomic and molecular dynamics. Light Sci Appl. 2017;6: e17045.
[87] Suzuki T, Isa F, Fujii L, Hirosawa K, Nakagawa K, Goda K, Sakuma I, Kannari F. Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering. Opt Express. 2015;23:30512–30522.
[89] Wang P, Liang J, Wang LV. Single-shot ultrafast imaging attaining 70 trillion frames per second. Nat Commun. 2020;11:2091.
[90] Hanzard P-H, Godin T, Idlahcen S, Rozé C, Hideur A. Real-time tracking of single shockwaves via amplified time-stretch imaging. Appl Phys Lett. 2018;112: 161106.
[91] Zhao X, Shin YC. Laser–plasma interaction and plasma enhancement by ultrashort double-pulse ablation. Appl Phys B Lasers Opt. 2015;120:81–87.
[92] Yamamoto S, Takimoto T, Tosa K, Kakue T, Awatsuji Y, Nishio K, Ura S, Kubota T. Moving picture recording and observation of femtosecond light pulse propagation using a rewritable holographic material. Nucl Instrum Methods Phys Res A. 2011;646:200–203.
[93] Inoue T, Sasaki M, Nishio K, Kubota T, Awatsuji Y. Numerical analysis of reconstructed image of light-in-flight recording by holography with a magnifying optical system. Appl Phys B Lasers Opt. 2022;128:53.