• Advanced Photonics
  • Vol. 6, Issue 6, 066002 (2024)
Joonhyuk Seo1,†, Jaegang Jo2, Joohoon Kim3, Joonho Kang4..., Chanik Kang1, Seong-Won Moon3, Eunji Lee5, Jehyeong Hong1,2,4, Junsuk Rho3,5,6,7,8,* and Haejun Chung1,2,4,*|Show fewer author(s)
Author Affiliations
  • 1Hanyang University, Department of Artificial Intelligence, Seoul, Republic of Korea
  • 2Hanyang University, Department of Electronic Engineering, Seoul, Republic of Korea
  • 3Pohang University of Science and Technology, Department of Mechanical Engineering, Pohang, Republic of Korea
  • 4Hanyang University, Department of Artificial Intelligence Semiconductor Engineering, Seoul, Republic of Korea
  • 5Pohang University of Science and Technology, Department of Chemical Engineering, Pohang, Republic of Korea
  • 6Pohang University of Science and Technology, Department of Electrical Engineering, Pohang, Republic of Korea
  • 7POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, Republic of Korea
  • 8National Institute of Nanomaterials Technology, Pohang, Republic of Korea
  • show less
    DOI: 10.1117/1.AP.6.6.066002 Cite this Article Set citation alerts
    Joonhyuk Seo, Jaegang Jo, Joohoon Kim, Joonho Kang, Chanik Kang, Seong-Won Moon, Eunji Lee, Jehyeong Hong, Junsuk Rho, Haejun Chung, "Deep-learning-driven end-to-end metalens imaging," Adv. Photon. 6, 066002 (2024) Copy Citation Text show less
    References

    [1] S. Wang et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [2] W. T. Chen et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [3] F. Yang et al. Wide field-of-view metalens: a tutorial. Adv. Photonics, 5, 033001(2023).

    [4] C.-Y. Fan, C.-P. Lin, G.-D. J. Su. Ultrawide-angle and high-efficiency metalens in hexagonal arrangement. Sci. Rep., 10, 15677(2020).

    [5] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [6] S. Shrestha et al. Broadband achromatic dielectric metalenses. Light: Sci. Appl., 7, 85(2018).

    [7] J. Kim et al. One-step printable platform for high-efficiency metasurfaces down to the deep-ultraviolet region. Light: Sci. Appl., 12, 68(2023).

    [8] J. Kim et al. Metasurface holography reaching the highest efficiency limit in the visible via one-step nanoparticle-embedded-resin printing. Laser Photon. Rev., 16, 2200098(2022).

    [9] J. Kim et al. A water-soluble label for food products prevents packaging waste and counterfeiting. Nat. Food, 5, 293-300(2024).

    [10] J. Kim et al. “Dynamic hyperspectral holography enabled by inverse-designed metasurfaces with oblique helicoidal cholesterics. Adv. Mater., 36, 2311785(2024).

    [11] J. Kim et al. 8″ wafer-scale, centimeter-sized, high-efficiency metalenses in the ultraviolet. Mater. Today, 73, 9-15(2024).

    [12] S.-W. Moon et al. Wafer-scale manufacturing of near-infrared metalenses. Laser Photon. Rev., 18, 2400929(2024).

    [13] J. Kim et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater., 22, 474-481(2023).

    [14] Y. Zhou et al. Flat optics for image differentiation. Nat. Photonics, 14, 316-323(2020).

    [15] M. Y. Shalaginov et al. Single-element diffraction-limited fisheye metalens. Nano Lett., 20, 7429-7437(2020).

    [16] A. Martins et al. On metalenses with arbitrarily wide field of view. ACS Photonics, 7, 2073-2079(2020).

    [17] F. Wang et al. Visible achromatic metalens design based on artificial neural network. Adv. Opt. Mater., 10, 2101842(2022).

    [18] M. K. Chen et al. Meta-lens in the sky. IEEE Access, 10, 46552-46557(2022).

    [19] S.-J. Kim et al. Dielectric metalens: properties and three-dimensional imaging applications. Sensors, 21, 4584(2021).

    [20] E. Choi et al. 360° structured light with learned metasurfaces. Nat. Photonics, 18, 848-855(2024).

    [21] Z. Li et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv., 7, eabe4458(2021).

    [22] Z. Li et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat. Commun., 13, 2409(2022).

    [23] H. Liang et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett., 18, 4460-4466(2018).

    [24] O. D. Miller, Z. Kuang. Fundamental limits for large-area meta-optics. Freeform Optics, JTu6A.6(2021).

    [25] S. M. Kamali et al. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7, 1041-1068(2018).

    [26] J. Engelberg, U. Levy. Optimizing the spectral range of diffractive metalenses for polychromatic imaging applications. Opt. Express, 25, 21637-21651(2017).

    [27] F. Presutti, F. Monticone. Focusing on bandwidth: achromatic metalens limits. Optica, 7, 624-631(2020).

    [28] S. So et al. Revisiting the design strategies for metasurfaces: fundamental physics, optimization, and beyond. Adv. Mater., 35, e2206399(2022).

    [29] D. Zhang et al. Cascaded chiral birefringent media enabled planar lens with programable chromatic aberration. PhotoniX, 5, 17(2024).

    [30] E. Tseng et al. Neural nano-optics for high-quality thin lens imaging. Nat. Commun., 12, 6493(2021).

    [31] R. Maman et al. Achromatic imaging systems with flat lenses enabled by deep learning. ACS Photonics, 10, 4494-4500(2023).

    [32] Y. Dong et al. Achromatic single metalens imaging via deep neural network. ACS Photonics, 11, 1645-1656(2024).

    [33] J. E. Fröch et al. Beating bandwidth limits for large aperture broadband nano-optics(2024).

    [34] H. Chung, O. D. Miller. High-NA achromatic metalenses by inverse design. Opt. Express, 28, 6945-6965(2020).

    [35] Z. Lin, S. G. Johnson. Overlapping domains for topology optimization of large-area metasurfaces. Opt. Express, 27, 32445-32453(2019).

    [36] L. Huang et al. Design and analysis of extended depth of focus metalenses for achromatic computational imaging. Photonics Res., 8, 1613-1623(2020).

    [37] M. Khorasaninejad et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett., 17, 1819-1824(2017).

    [38] L. Chen et al. Simple baselines for image restoration, 17-33(2022).

    [39] S. W. Zamir et al. Restormer: efficient transformer for high-resolution image restoration, 5728-5739(2022).

    [40] G. Yoon et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 15, 698-706(2021).

    [41] J. W. Goodman. Introduction to Fourier Optics(2005).

    [42] Y. Zhou et al. Image restoration for under-display camera, 9179-9188(2021).

    [43] F. Shen, A. Wang. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula. Appl. Opt., 45, 1102-1110(2006).

    [44] Y. Li et al. NTIRE 2023 challenge on image denoising: methods and results, 1904-1920(2023).

    [45] S. Nah et al. NTIRE 2021 challenge on image deblurring, 149-165(2021).

    [46] J. S. Goldstein, I. S. Reed, L. L. Scharf. A multistage representation of the Wiener filter based on orthogonal projections. IEEE Trans. Inf. Theory, 44, 2943-2959(1998).

    [47] M. T. Heath. Scientific Computing: An Introductory Survey(2018).

    [48] R. Yang et al. NTIRE 2022 challenge on super-resolution and quality enhancement of compressed video: dataset, methods and results, 1221-1238(2022).

    [49] W. Wu et al. URetinex-Net: Retinex-based deep unfolding network for low-light image enhancement, 5901-5910(2022).

    [50] Q. Jiang et al. Annular computational imaging: capture clear panoramic images through simple lens. IEEE Trans. Comput. Imaging, 8, 1250-1264(2022).

    [51] E. Agustsson, R. Timofte. NTIRE 2017 Challenge on single image super-resolution: dataset and study, 1122-1131(2017).

    [52] S. Nah, T. Hyun Kim, K. Mu Lee. Deep multi-scale convolutional neural network for dynamic scene deblurring, 3883-3891(2017).

    [53] X. Chu et al. Improving image restoration by revisiting global information aggregation, 53-71(2022).

    [54] L. Ruthotto, E. Haber. An introduction to deep generative modeling. GAMM-Mitteilungen, 44, e202100008(2021).

    [55] T. Miyato et al. Spectral normalization for generative adversarial networks(2018).

    [56] J. H. Lim, J. C. Ye. Geometric GAN(2017).

    [57] S. W. Zamir et al. Learning enriched features for fast image restoration and enhancement. IEEE Trans. Pattern Anal. Mach. Intell., 45, 1934-1948(2022).

    [58] L. Chen et al. HINet: half instance normalization network for image restoration, 182-192(2021).

    [59] Z. Wang et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600-612(2004).

    [60] R. Zhang et al. The unreasonable effectiveness of deep features as a perceptual metric, 586-595(2018).

    [61] A. V. Oppenheim, J. S. Lim. The importance of phase in signals. Proc. IEEE, 69, 529-541(1981).

    [62] M. Everingham et al. The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis., 88, 303-338(2010).

    [63] W. Liu et al. SSD: single shot multibox detector, 21-37(2016).

    [64] Y. Cui et al. Selective frequency network for image restoration(2022).

    [65] Y. Zhang et al. Image super-resolution using very deep residual channel attention networks, 286-301(2018).

    Joonhyuk Seo, Jaegang Jo, Joohoon Kim, Joonho Kang, Chanik Kang, Seong-Won Moon, Eunji Lee, Jehyeong Hong, Junsuk Rho, Haejun Chung, "Deep-learning-driven end-to-end metalens imaging," Adv. Photon. 6, 066002 (2024)
    Download Citation