• Laser & Optoelectronics Progress
  • Vol. 60, Issue 10, 1010001 (2023)
Haolin Liang, Huaiyu Cai*, Bochong Liu, Yi Wang, and Xiaodong Chen
Author Affiliations
  • Key Laboratory of Photoelectric Information, Ministry of Education, School of Precision Instruments and Optoelectronic Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP213044 Cite this Article Set citation alerts
    Haolin Liang, Huaiyu Cai, Bochong Liu, Yi Wang, Xiaodong Chen. Road Falling Objects Detection Algorithm Based on Image and Point Cloud Fusion[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010001 Copy Citation Text show less
    References

    [1] Ren T T. Detection and identification of urban road pollution based on video image processing[D], 11-25(2015).

    [2] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [3] Zhao L, Hu J, Liu H et al. Deep learning based on semantic segmentation for three-dimensional object detection from point clouds[J]. Chinese Journal of Lasers, 48, 1710004(2021).

    [4] Chen X Z, Ma H M, Wan J et al. Multi-view 3D object detection network for autonomous driving[C], 6526-6534(2017).

    [5] Ku J, Mozifian M, Lee J et al. Joint 3D proposal generation and object detection from view aggregation[C](2018).

    [6] Zhang S X. Research on obstacle detection technology based on radar and camera of driverless smart vehicles[D], 36-50(2013).

    [7] Qi C R, Liu W, Wu C X et al. Frustum PointNets for 3D object detection from RGB-D data[C], 918-927(2018).

    [8] Hua C J, Pan R, Chen Y. Binocular ranging method based on improved ORB-RANSAC[J]. Laser & Optoelectronics Progress, 58, 2215002(2021).

    [9] Hu K L, Wang T M, Li Z et al. Real-time extraction method of road boundary based on three-dimensional lidar[J]. Journal of Physics: Conference Series, 1074, 012080(2018).

    [10] Shao J T, Du C Q, Zou B. Lidar ground segmentation method based on point cloud cluster combination feature[J]. Laser & Optoelectronics Progress, 58, 0428001(2021).

    [11] Zhang W M, Qi J B, Wan P et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 8, 501(2016).

    [12] Zhang C Y, Chen Z H, Han L. Obstacle detection of lidar based on improved DBSCAN algorithm[J]. Laser & Optoelectronics Progress, 58, 2428005(2021).

    [13] LeCun Y, Bottou L, Bengio Y et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).

    [14] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).

    [15] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556

    [16] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    Haolin Liang, Huaiyu Cai, Bochong Liu, Yi Wang, Xiaodong Chen. Road Falling Objects Detection Algorithm Based on Image and Point Cloud Fusion[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010001
    Download Citation