• Study On Optical Communications
  • Vol. 50, Issue 2, 22004801 (2024)
Xiaomei GAO1, Yuting SHU2, Jingyuan LIANG2, Huiqin WANG3..., Li ZHAO4, Peng SONG5 and Xizheng KE2,*|Show fewer author(s)
Author Affiliations
  • 1Artificial Intelligence College, Xi’an Aeronautical Polytechnic Institute, Xi'an 710089, China
  • 2School of Automation and Information Engineering, Xi’an University of Technology, Xi'an 710048, China
  • 3School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
  • 4Electronic Information Engineering, Xi’an Technological University, Xi'an 710021, China
  • 5College of Electronic Information, Xi’an Polytechnic University, Xi'an 710600, China
  • show less
    DOI: 10.13756/j.gtxyj.2024.220048 Cite this Article
    Xiaomei GAO, Yuting SHU, Jingyuan LIANG, Huiqin WANG, Li ZHAO, Peng SONG, Xizheng KE. Research Progress of Communication Laser and Its Modulation Technology[J]. Study On Optical Communications, 2024, 50(2): 22004801 Copy Citation Text show less
    Frequency response curve under the influence of different parameters of relaxation oscillation[36]
    Fig. 1. Frequency response curve under the influence of different parameters of relaxation oscillation[36]
    Frequency response curve of DH-LD affected by different package parasitic parameters[36]
    Fig. 2. Frequency response curve of DH-LD affected by different package parasitic parameters[36]
    Impulse response curve under the influence of different parameters of relaxation oscillation [35]
    Fig. 3. Impulse response curve under the influence of different parameters of relaxation oscillation [35]
    P-I characteristic curves with DH-LD[35]
    Fig. 4. P-I characteristic curves with DH-LD[35]
    P-I characteristic curves with different temperatures[35]
    Fig. 5. P-I characteristic curves with different temperatures[35]
    CINR study under turbulence[38]
    Fig. 6. CINR study under turbulence[38]
    CINR under various carrier numbers[38]
    Fig. 7. CINR under various carrier numbers[38]
    Maximum CINR under different nonlinear coefficients[38]
    Fig. 8. Maximum CINR under different nonlinear coefficients[38]
    Time domain waveform after LD and predistortion[39]
    Fig. 9. Time domain waveform after LD and predistortion[39]
    Spectrum before and after predistortion[39]
    Fig. 10. Spectrum before and after predistortion[39]
    Power spectrum before and after predistortion[39]
    Fig. 11. Power spectrum before and after predistortion[39]
    Constellation before and after predistortion[39]
    Fig. 12. Constellation before and after predistortion[39]
    Overall system block diagram[40]
    Fig. 13. Overall system block diagram[40]
    Output optical power of APC in open loop and closed loop[40]
    Fig. 14. Output optical power of APC in open loop and closed loop[40]
    Output power of APC and ATC working[40]
    Fig. 15. Output power of APC and ATC working[40]
    Temperature variation curve under ATC operation[40]
    Fig. 16. Temperature variation curve under ATC operation[40]
    Block diagram of high-speed internal modulation circuit[41]
    Fig. 17. Block diagram of high-speed internal modulation circuit[41]
    Structure diagram of electro-optic experimental system
    Fig. 18. Structure diagram of electro-optic experimental system
    Trend of refractive index of o and e light with temperature T[43]
    Fig. 19. Trend of refractive index of o and e light with temperature T[43]
    Variation trend of longitudinal modulated output light intensity and temperature T[43]
    Fig. 20. Variation trend of longitudinal modulated output light intensity and temperature T[43]
    Transverse modulation output light intensity and temperature T change curve[43]
    Fig. 21. Transverse modulation output light intensity and temperature T change curve[43]
    光源类型FP-LDDFB-LDVCSEL
    典型波1 280~1 3301 280~1 330850
    长/nm1 480~1 6501 480~1 650
    线宽/nm2.0~10.0<0.21.0~2.0
    输出功率/ dBm>0>0<0
    发射位置边发射边发射面发射
    光纤耦合复杂复杂简单
    传输距离中等距离长距离短距离
    调制带宽/GHz>10>20>10
    温度稳定性/nm/℃<0.1<0.1<0.1
    成本中等
    Table 1. Comparison of properties of common communication light sources in optical communication[2]
    年份人物/组织研究进展
    1962Hall等第1代同质结LD研制成功
    1979Soda等首先提出VCSEL的概念
    1989Koyama等VCSEL实现了850 nm波段室温下连续激射
    1996Lear等氧化物限制型VCSEL,用于光通信
    2008FinisarNRZ下短波通信VCSEL速率为30 Gbit/s
    2015IBM-CUT引入均衡技术,25 ℃速率为71 Gbit/s
    2020Lavrencik等短波VCSEL PAM4下速率超过160 Gbit/s
    2021Zuo等结合噪声消除与非线性均衡,速率达200 Gbit/s
    2022张建伟等长波段VCSEL国内首次实现输出光功率mW量级
    2022韩赛一等优化晶圆熔合技术制备1 550 nm VCSEL
    Table 2. Research progress of lasers at home and abroad
    调制方式内调制外调制
    典型代表DFBMQU-DFBEAMZM
    调制带宽/GHz约12<20约40约50
    啁啾因子3~5约2<10
    驱动电流或电压I>50 mAI>50 mA电压约1.5 V电压约5.0~10.0 V
    阻抗4~8 Ω4~8 Ω约0.1 pF50 Ω
    转换关系线性线性exp(v)cos2 (v)
    Table 3. Difference between the internal and external modulation[14]
    年份人物/组织研究进展
    1992Bell采用应变MQU型的有源增益区
    1997Matsui等设计了20对量子阱DFB激光器
    2014Nakahara等应用BH结构且增益区材料为AlGaInAs
    2017FinisarDR结构实现PPR效应得到55 GHz的3 dB带宽
    2018刘功海等集成ADR制作出150 μm短腔的激光器
    2019Sasada等在有源区用AlGaInAs量子阱材料且掺入Zn
    2021Yamaoka等应用PPR效应得到108 GHz的3 dB带宽
    Table 4. Research progress of internal modulation technology at home and abroad
    年份人物/组织研究进展
    1994王卫东等国内最早行波电极的Ti:LiNbO3调制器
    2001张兵等采用T型复合电极结构做出Ti:LiNbO3调制器
    2005高致慧等脊波导与T型电极相结合的方案
    2018Wang等研制的TFLN调制器速率高达210 Gbit/s
    2020徐梦玥等率先完成了高性能的IQ调制器芯片设计
    2021Fujitsu聚焦130 Gbuad相干驱动模块
    2022Xu等首次实现110 GHz的双偏振IQ调制器
    2022杨帆等3 dB带宽超过110 GHz的TFLN MZM
    Table 5. Research progress of external modulation technology at home and abroad
    Xiaomei GAO, Yuting SHU, Jingyuan LIANG, Huiqin WANG, Li ZHAO, Peng SONG, Xizheng KE. Research Progress of Communication Laser and Its Modulation Technology[J]. Study On Optical Communications, 2024, 50(2): 22004801
    Download Citation