• Study On Optical Communications
  • Vol. 50, Issue 2, 22004801 (2024)
Xiaomei GAO1, Yuting SHU2, Jingyuan LIANG2, Huiqin WANG3..., Li ZHAO4, Peng SONG5 and Xizheng KE2,*|Show fewer author(s)
Author Affiliations
  • 1Artificial Intelligence College, Xi’an Aeronautical Polytechnic Institute, Xi'an 710089, China
  • 2School of Automation and Information Engineering, Xi’an University of Technology, Xi'an 710048, China
  • 3School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
  • 4Electronic Information Engineering, Xi’an Technological University, Xi'an 710021, China
  • 5College of Electronic Information, Xi’an Polytechnic University, Xi'an 710600, China
  • show less
    DOI: 10.13756/j.gtxyj.2024.220048 Cite this Article
    Xiaomei GAO, Yuting SHU, Jingyuan LIANG, Huiqin WANG, Li ZHAO, Peng SONG, Xizheng KE. Research Progress of Communication Laser and Its Modulation Technology[J]. Study On Optical Communications, 2024, 50(2): 22004801 Copy Citation Text show less
    References

    [1] Hall R N, Fenner G E, Kingsley J D et al. Coherent Light Emission from GaAs Junctions[J]. Physical Review Letters, 366, 186-191(1962).

    [2] Wang L J, Ning Y Q, Qin L et al. Development of High Power Diode Laser[J]. Journal of Luminescence, 36, 1-19(2015).

    [3] Soda H, Iga K, Kitahara C et al. GaInAsP/InP Surface Emitting Injection Lasers[J]. Japanese Journal of Ap-plied Physics, 18, 2329-2330(1979).

    [4] Koyama F, Kinoshita S, Iga K. Room-temperature Continuous Wave Lasing Characteristics of a GaAs Vertical Cavity Surface Emitting Laser[J]. Applied Physics Letters, 55, 221-222(1989).

    [5] Lear K L, Mar A, Choquette K D et al. High-frequency Modulation of Oxide-confined Vertical Cavity Surface Emitting Lasers[J]. Electronics Letters, 32, 457-458(1996).

    [6] Wang Q M. Breakthroughs and Development of Semiconductor Lasers in China[J]. China Laser, 37, 2190-2197(2010).

    [7] Johnson R H, Serkland D K. 17G Directly Modulated Datacom VCSELs[C], 4551302(2008).

    [8] Kuchta D M, Rylyakov A V, Doany F E et al. A 71-Gb/s NRZ Modulated 850 nm VCSEL based Optical Link[J]. IEEE Photonics Technology Letters, 27, 577-580(2015).

    [9] Chen L H, Yang G W, Liu Y X. Development of Semiconductor Lasers[J]. China Laser, 47, 13-31(2020).

    [10] Lavrencik J, Varughese S, Ledentsov N et al. 168 Gbps PAM-4 Multimode Fiber Transmission through 50 m Using 28 GHz 850 nm Multimode VCSELs[C], 19629525(2020).

    [11] Zuo T J, Zhang T T, Zhang S et al. 850 nm VCSEL based Single Lane 200 Gbps PAM-4 Transmission for Datacenter Intra Connections[J]. IEEE Photonics Technology Letters, 33, 1042-1045(2021).

    [12] Zhang J W, Zhang X, Zhou Y L et al. Single Transverse Mode Vertical Cavity Surface Emitting Semiconductor Laser with 1 550 nm mW Level[J]. Acta Physica Sinica, 71, 064204(2022).

    [13] Han S Y, Tian S C, Xu H Y et al. Research Progress of High-speed 1 550 nm Vertical Cavity Surface Emitting Laser[J]. Journal of Luminescence, 43, 736-744(2022).

    [14] Tang X D, Zeng Q J, Jin Y H et al. Optoelectronic Devices in All Optical Communication Network and Their Latest Progress(1)[J]. Optical Communication Technology, 25, 90-94(2001).

    [15] Tian Q, Han Y, Zhang R G et al. Research on High-speed Direct Modulation Semiconductor Laser[J]. Study on Optical Communications, 55-62(2023).

    [16] Morton P A, Logan R A, Tanbun-Ek T et al. 25 GHz Bandwidth 1.55 μm GaInAsP P-doped Strained Multiquantum-well Lasers[J]. Electronics Letters, 28, 2156-2157(1992).

    [17] Matsui Y, Murai H, Arahira S et al. 30 GHz Bandwidth 1.55 μm Strain-compensated InGaAlAs-InGaAsP MQW Laser[J]. IEEE Photonics Technology Letters, 9, 25-27(1997).

    [18] Nakahara K, Wakayama Y, Kitatani T et al. Direct Modulation at 56 and 50 Gb/s of 1.3 μm InGaAlAs Ridge-Shaped-BH DFB Lasers[J]. IEEE Photonics Technology Letters, 27, 534-536(2014).

    [19] Liu G H, Zhao G Y, Sun J Q et al. Experimental Demonstration of DFB Lasers with Active Distributed Reflector[J]. Optics Express, 26, 29784-29785(2018).

    [20] Sasada N, Nakajima T, Sekino Y et al. Wide-temperature-range (25-80 ℃) 53-Gbaud PAM4(106 Gb/s) Operation of 1.3 μm Directly Modulated DFB Lasers for 10 km Transmission[J]. Journal of Lightwave Technology, 37, 1686-1689(2019).

    [21] Lu D, Yang Q L, Wang H et al. Review of Semiconductor Distributed Feedback Lasers in the Optical Communication Band[J]. China Journal of Laser, 47, 1-21(2020).

    [22] Matsui Y, Schatz R, Pham T et al. 55 GHz Bandwidth Distributed Reflector Laser[J]. Journal of Lightwave Technology, 35, 397-403(2017).

    [23] Yamaoka S, Diamantopoulos P, Nishi H et al. Directly Modulated Membrane Lasers with 108 GHz Bandwidth on A High-thermal-conductivity Silicon Carbide Substrate[J]. Nature Photonics, 15, 28-35(2021).

    [24] Heidari E, Dalir H, Ahmed M F et al. Hexagonal Transverse Coupled Cavity VCSEL Redefining the High-speed Lasers[J]. Nanophotonics, 9, 4743-4748(2021).

    [25] Wang W D, Wu B Y, Li D J et al. Ti: LiNbO3 M-Z Intensity Modulator for Long-distance High-speed Optical Fiber Communication System[J]. Journal of Communication, 15, 52-57(1994).

    [26] Zhang B, Wu B Y, Zhou W Q et al. 40 GHz Lithium Niobate Electro-optical Modulator[J]. Optoelectronics Laser, 12, 1199-1201(2001).

    [27] Gao Z H, Gan Q Y, Wan J K. The Optimization and Design of Ultra-broad-bandwidth LiNbO3 Electro-optic Modulator with a New Structure[J]. Acta Photonica Sinica, 34, 365-368(2005).

    [28] Wang C, Zhang M, Chen X et al. Integrated Lithium Niobate Electro-optic Modulators Operating at CMOS-Compatible Voltages[J]. Nature, 562, 101-104(2018).

    [29] He M B, Xu M Y, Ren Y X et al. High-performance Hybrid Silicon and Lithium Niobate Mach-Zehnder Modulators for 100 Gbit/s and Beyond[J]. Nature Photonics, 13, 359-364(2019).

    [30] Kharel P, Reimer C, Luke K et al. Breaking Voltage-bandwidth Limits in Integrated Lithium Niobate Modulators Using Micro-structured Electrodes[J]. Optica, 8, 357-363(2021).

    [31] Yang F, Fang X S, Chen X Y et al. Monolithic Thin Film Lithium Niobate Electro-optic Modulator with over 110 GHz Bandwidth[J]. Chinese Optics Letters, 20, 148-152(2022).

    [32] Xu M Y, He M B, Zhang H G et al. High-performance Coherent Optical Modulators based on Thin-film Lithium Niobate Plat-form[J]. Nature Communications, 11, 3911(2020).

    [33] Xu M Y, Zhu Y T, Pittalà F et al. Dual-polarization Thin-film Lithium Niobate In-phase Quadrature Modulators for Terabit-per-second Transmission[J]. Optica, 9, 61-62(2022).

    [34] Ke X Z, Yang S J, Wu J L et al. Research Progress of Adaptive Optics Technology in Wireless Optical Communication System of Xi’an University of Technology[J]. High Power Laser and Particle Beams, 33, 30-52(2021).

    [35] Ke X Z, Deng L J[M]. Wireless Optical Communication(2016).

    [36] Liu Z H. Study on Response Characteristics of Semiconductor Laser and Photodetector[D](2019).

    [37] Ke X Z[M]. Principle and Application of Wireless Optical Orthogonal Frequency Division Multiplexing(2018).

    [38] Zhang L. Research on Nonlinear Characteristics of Laser in Wireless Laser Communication[D](2016).

    [39] Shi W J. Analysis and Research on Non-limiting QPSK-like Sinusoidal Modulation in Atmospheric Laser Communication[D](2014).

    [40] Fan G D. Research on Power Control System of Semiconductor Laser[D](2016).

    [41] Zhao C C. Research and Design of High-speed Internal Modulation Technology of Semiconductor Laser[D](2016).

    [42] Lin K Y, Xu J, Wang H C et al. Temperature Properties of Uniaxial Crystal Electro-optic Modulator[J]. China Journal of Lasers, 33, 1051-1055(2006).

    [43] Yang X. Research on Electro-optic Modulation Technology and Driving Source[D](2016).

    Xiaomei GAO, Yuting SHU, Jingyuan LIANG, Huiqin WANG, Li ZHAO, Peng SONG, Xizheng KE. Research Progress of Communication Laser and Its Modulation Technology[J]. Study On Optical Communications, 2024, 50(2): 22004801
    Download Citation