• Nano-Micro Letters
  • Vol. 16, Issue 1, 002 (2024)
Donghwan Ji1 and Jaeyun Kim1,2,3,4,*
Author Affiliations
  • 1School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
  • 2Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
  • 3Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
  • 4Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
  • show less
    DOI: 10.1007/s40820-023-01220-4 Cite this Article
    Donghwan Ji, Jaeyun Kim. Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable, Safe, and High-Performance Li-Ion Batteries[J]. Nano-Micro Letters, 2024, 16(1): 002 Copy Citation Text show less
    References

    [1] K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4(6), eaas9820 (2018).

    [2] D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020).

    [3] G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater et al., Recycling lithium-ion batteries from electric vehicles. Nature 575(7781), 75–86 (2019).

    [4] C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development. Nat. Mater. 16(1), 45–56 (2017).

    [5] D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015).

    [6] K. Xu, Li-ion battery electrolytes. Nat. Energy 6(7), 763–763 (2021).

    [7] L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015)

    [8] L. Smith, B. Dunn, Opening the window for aqueous electrolytes. Science 350(6263), 918–918 (2015).

    [9] C. Yang, J. Chen, X. Ji, T.P. Pollard, X. Lü et al., Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569(7755), 245–250 (2019).

    [10] X. Wu, X. Ji, Aqueous batteries get energetic. Nat. Chem. 11(8), 680–681 (2019).

    [11] Y. Liu, X. Lu, F. Lai, T. Liu, P.R. Shearing et al., Rechargeable aqueous Zn-based energy storage devices. Joule 5(11), 2845–2903 (2021).

    [12] X. Zhang, J.-P. Hu, N. Fu, W.-B. Zhou, B. Liu et al., Comprehensive review on zinc-ion battery anode: challenges and strategies. InfoMat 4(7), e12306 (2022).

    [13] Y.S. Zhang, N.E. Courtier, Z. Zhang, K. Liu, J.J. Bailey et al., A review of lithium-ion battery electrode drying: mechanisms and metrology. Adv. Energy Mater. 12(2), 2102233 (2022).

    [14] T.-W. Kwon, J.W. Choi, A. Coskun, Prospect for supramolecular chemistry in high-energy-density rechargeable batteries. Joule 3(3), 662–682 (2019).

    [15] J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen et al., The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 4(11), 5387–5416 (2020).

    [16] J. Shin, J. Lee, Y. Park, J.W. Choi, Aqueous zinc ion batteries: Focus on zinc metal anodes. Chem. Sci. 11(8), 2028–2044 (2020).

    [17] S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016).

    [18] Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Progress in electrolytes for rechargeable li-based batteries and beyond. Green Energy Environ. 1(1), 18–42 (2016).

    [19] B. Yuan, K. Wen, D. Chen, Y. Liu, Y. Dong et al., Composite separators for robust high rate lithium ion batteries. Adv. Funct. Mater. 31(32), 2101420 (2021).

    [20] W. Luo, S. Cheng, M. Wu, X. Zhang, D. Yang et al., A review of advanced separators for rechargeable batteries. J. Power. Sources 509, 230372 (2021).

    [21] W. Zhang, Z. Tu, J. Qian, S. Choudhury, L.A. Archer et al., Design principles of functional polymer separators for high-energy, metal-based batteries. Small 14(11), 1703001 (2018).

    [22] A.L. Mong, Q.X. Shi, H. Jeon, Y.S. Ye, X.L. Xie et al., Tough and flexible, super ion-conductive electrolyte membranes for lithium-based secondary battery applications. Adv. Funct. Mater. 31(12), 2008586 (2021).

    [23] F. Baskoro, H.Q. Wong, H.-J. Yen, Strategic structural design of a gel polymer electrolyte toward a high efficiency lithium-ion battery. ACS Appl. Energy Mater. 2(6), 3937–3971 (2019).

    [24] H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo et al., Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev. 46(3), 797–815 (2017).

    [25] T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18(12), 1278–1291 (2019).

    [26] T. Ye, L. Li, Y. Zhang, Recent progress in solid electrolytes for energy storage devices. Adv. Funct. Mater. 30(29), 2000077 (2020).

    [27] F. Duffner, N. Kronemeyer, J. Tübke, J. Leker, M. Winter et al., Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6(2), 123–134 (2021).

    [28] Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4(4), 269–280 (2019).

    [29] M.D. Tikekar, S. Choudhury, Z. Tu, L.A. Archer, Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1(9), 16114 (2016).

    [30] Y. Lv, Y. Xiao, L. Ma, C. Zhi, S. Chen, Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv. Mater. 34(4), 2106409 (2022).

    [31] H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 60(2), 598–616 (2021).

    [32] M. Li, C. Wang, Z. Chen, K. Xu, J. Lu, New concepts in electrolytes. Chem. Rev. 120(14), 6783–6819 (2020).

    [33] F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018).

    [34] C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54(100), 14097–14099 (2018).

    [35] L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang et al., Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 55(25), 7136–7141 (2016).

    [36] Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama et al., Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 1(10), 16129 (2016).

    [37] S. Kondou, E. Nozaki, S. Terada, M.L. Thomas, K. Ueno et al., Enhanced electrochemical stability of molten li salt hydrate electrolytes by the addition of divalent cations. J. Phys. Chem. C 122(35), 20167–20175 (2018).

    [38] S. Ko, Y. Yamada, K. Miyazaki, T. Shimada, E. Watanabe et al., Lithium-salt monohydrate melt: a stable electrolyte for aqueous lithium-ion batteries. Electrochem. Commun. 104, 106488 (2019).

    [39] N. Dubouis, P. Lemaire, B. Mirvaux, E. Salager, M. Deschamps et al., The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “water-in-salt” electrolytes. Energy Environ. Sci. 11(12), 3491–3499 (2018).

    [40] C. Yang, X. Ji, X. Fan, T. Gao, L. Suo et al., Flexible aqueous Li-ion battery with high energy and power densities. Adv. Mater. 29(44), 1701972 (2017).

    [41] C. Yang, J. Chen, T. Qing, X. Fan, W. Sun et al., 4.0 V Aqueous Li-ion batteries. Joule 1(1), 122–132 (2017).

    [42] L. Li, H. Cheng, J. Zhang, Y. Guo, C. Sun et al., Quantitative chemistry in electrolyte solvation design for aqueous batteries. ACS Energy Lett. 8(2), 1076–1095 (2023).

    [43] S. Weng, X. Zhang, G. Yang, S. Zhang, B. Ma et al., Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat. Commun. 14(1), 4474 (2023).

    [44] Z. Chang, Y. Qiao, H. Deng, H. Yang, P. He et al., A liquid electrolyte with de-solvated lithium ions for lithium-metal battery. Joule 4(8), 1776–1789 (2020).

    [45] C. Yang, L. Suo, O. Borodin, F. Wang, W. Sun et al., Unique Aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proc. Natl. Acad. Sci. U.S.A. 114(24), 6197–6202 (2017).

    [46] H. Zhang, X. Liu, H. Li, B. Qin, S. Passerini, High-voltage operation of a V2O5 cathode in a concentrated gel polymer electrolyte for high-energy aqueous zinc batteries. ACS Appl. Mater. Interfaces 12(13), 15305–15312 (2020).

    [47] S.A. Langevin, B. Tan, A.W. Freeman, J.C. Gagnon, C.M. Hoffman et al., UV-cured gel polymer electrolytes with improved stability for advanced aqueous Li-ion batteries. Chem. Commun. 55(87), 13085–13088 (2019).

    [48] J.M. Park, M. Jana, P. Nakhanivej, B.-K. Kim, H.S. Park, Facile multivalent redox chemistries in water-in-bisalt hydrogel electrolytes for hybrid energy storage full cells. ACS Energy Lett. 5(4), 1054–1061 (2020).

    [49] J. Zhang, C. Cui, P.-F. Wang, Q. Li, L. Chen et al., “Water-in-salt” polymer electrolyte for Li-ion batteries. Energy Environ. Sci. 13(9), 2878–2887 (2020).

    [50] Y. Tamai, H. Tanaka, K. Nakanishi, Molecular dynamics study of polymer−water interaction in hydrogels. 1. Hydrogen-bond structure. Macromolecules 29(21), 6750–6760 (1996).

    [51] Y. Tamai, H. Tanaka, K. Nakanishi, Molecular dynamics study of polymer−water interaction in hydrogels. 2. Hydrogen-bond dynamics. Macromolecules 29(21), 6761–6769 (1996).

    [52] R. Yudianti, M. Karina, M. Sakamoto, J.-I. Azuma, DSC analysis on water state of salvia hydrogels. Macromol. Res. 17(12), 1015–1020 (2009).

    [53] P. Yang, J.-L. Yang, K. Liu, H.J. Fan, Hydrogels enable future smart batteries. ACS Nano 16(10), 15528–15536 (2022).

    [54] F. Yang, J.A. Yuwono, J. Hao, J. Long, L. Yuan et al., Understanding H2 evolution electrochemistry to minimize solvated water impact on zinc-anode performance. Adv. Mater. 34(45), 2206754 (2022).

    [55] C. Zhang, No need to reduce water. Nat. Energy 5(5), 355–355 (2020).

    [56] J. Brown, A. Grimaud, With only a grain of salt. Nat. Energy 7(2), 126–127 (2022).

    [57] J. Yue, J. Zhang, Y. Tong, M. Chen, L. Liu et al., Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nat. Chem. 13(11), 1061–1069 (2021).

    [58] J. Xu, C. Wang, Perspective—electrolyte design for aqueous batteries: from ultra-high concentration to low concentration. J. Electrochem. Soc. 169(3), 030530 (2022).

    [59] X. He, B. Yan, X. Zhang, Z. Liu, D. Bresser et al., Fluorine-free water-in-ionomer electrolytes for sustainable lithium-ion batteries. Nat. Commun. 9(1), 5320 (2018).

    [60] J. Xie, Z. Liang, Y.-C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19(9), 1006–1011 (2020).

    [61] J. Xu, X. Ji, J. Zhang, C. Yang, P. Wang et al., Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 ||Li4Ti5O12 pouch cells. Nat. Energy 7(2), 186–193 (2022).

    [62] D.T. Boyle, S.C. Kim, S.T. Oyakhire, R.A. Vilá, Z. Huang et al., Correlating kinetics to cyclability reveals thermodynamic origin of lithium anode morphology in liquid electrolytes. J. Am. Chem. Soc. 144(45), 20717–20725 (2022).

    [63] D. Ji, J.M. Park, M.S. Oh, T.L. Nguyen, H. Shin et al., Superstrong, superstiff, and conductive alginate hydrogels. Nat. Commun. 13(1), 3019 (2022).

    [64] Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8(2), 109–122 (2023).

    [65] D. Kilburn, J.H. Roh, L. Guo, R.M. Briber, S.A. Woodson, Molecular crowding stabilizes folded RNA structure by the excluded volume effect. J. Am. Chem. Soc. 132(25), 8690–8696 (2010).

    [66] M. Gao, D. Gnutt, A. Orban, B. Appel, F. Righetti et al., RNA hairpin folding in the crowded cell. Angew. Chem. Int. Ed. 55(9), 3224–3228 (2016).

    [67] L.A. Ferreira, V.N. Uversky, B.Y. Zaslavsky, Role of solvent properties of water in crowding effects induced by macromolecular agents and osmolytes. Mol. BioSyst. 13(12), 2551–2563 (2017).

    [68] S. Wang, A. Lu, C.-J. Zhong, Hydrogen production from water electrolysis: role of catalysts. Nano Converg. 8(1), 4 (2021).

    [69] Y. Hata, T. Sawada, T. Serizawa, Macromolecular crowding for materials-directed controlled self-assembly. J. Mater. Chem. B 6(40), 6344–6359 (2018).

    [70] G. Rivas, A.P. Minton, Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem. Sci. 41(11), 970–981 (2016).

    [71] V. Raj, V. Venturi, V.R. Kankanallu, B. Kuiri, V. Viswanathan et al., Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat. Mater. 21(9), 1050–1056 (2022).

    [72] H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020).

    [73] Z. Miao, F. Zhang, H. Zhao, M. Du, H. Li et al., Tailoring local electrolyte solvation structure via a mesoporous molecular sieve for dendrite-free zinc batteries. Adv. Funct. Mater. 32(20), 2111635 (2022).

    [74] R. Xiao, Z. Cai, R. Zhan, J. Wang, Y. Ou et al., Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries. Chem. Eng. J. 420, 129642 (2021).

    [75] B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2021).

    [76] J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022).

    [77] S. Ye, X. Chen, R. Zhang, Y. Jiang, F. Huang et al., Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode. Nano-Micro Lett. 14(1), 187 (2022).

    [78] Y. Lu, R. Zhou, N. Wang, Y. Yang, Z. Zheng et al., Engineer nanoscale defects into selective channels: MOF-Enhanced Li+ separation by porous layered double hydroxide membrane. Nano-Micro Lett. 15(1), 147 (2023).

    [79] C. Monroe, J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152(2), A396 (2005).

    [80] C.D. Fincher, C.E. Athanasiou, C. Gilgenbach, M. Wang, B.W. Sheldon et al., Controlling dendrite propagation in solid-state batteries with engineered stress. Joule.

    [81] D. Ji, T.L. Nguyen, J. Kim, Bioinspired structural composite hydrogels with a combination of high strength, stiffness, and toughness. Adv. Funct. Mater. 31(28), 2101095 (2021).

    [82] X. Yang, J. Liu, N. Pei, Z. Chen, R. Li et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 15(1), 74 (2023).

    [83] Y. Su, F. Xu, X. Zhang, Y. Qiu, H. Wang, Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries. Nano-Micro Lett. 15(1), 82 (2023).

    [84] D. Aurbach, M. Levi, N. Shpigel, Upshifting potentials to increase reversibility. Nat. Energy (2022).

    [85] S. Ko, T. Obukata, T. Shimada, N. Takenaka, M. Nakayama et al., Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy 7, 1217–1224 (2022).

    [86] S. Ko, N. Takenaka, A. Kitada, A. Yamada, Electrolyte science, What’s next? Next Energy 1(2), 100014 (2023).

    Donghwan Ji, Jaeyun Kim. Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable, Safe, and High-Performance Li-Ion Batteries[J]. Nano-Micro Letters, 2024, 16(1): 002
    Download Citation