• Photonics Research
  • Vol. 13, Issue 4, 865 (2025)
Luigi Santamaria1,*, Fabrizio Sgobba1, Deborah Pallotti1, and Cosmo Lupo2,3
Author Affiliations
  • 1Agenzia Spaziale Italiana, Matera Space Center, Contrada Terlecchia snc., 75100 Matera, Italy
  • 2Dipartimento Interateneo di Fisica, Politecnico & Università di Bari, 70126 Bari, Italy
  • 3INFN, Sezione di Bari, 70126 Bari, Italy
  • show less
    DOI: 10.1364/PRJ.544197 Cite this Article Set citation alerts
    Luigi Santamaria, Fabrizio Sgobba, Deborah Pallotti, Cosmo Lupo, "Single-photon super-resolved spectroscopy from spatial-mode demultiplexing," Photonics Res. 13, 865 (2025) Copy Citation Text show less
    References

    [1] L. Rayleigh. XXXI. Investigations in optics, with special reference to the spectroscope. Philos. Mag., 8, 261-274(1879).

    [2] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [3] A. N. Boto, P. Kok, D. S. Abrams. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett., 85, 2733-2736(2000).

    [4] V. Giovannetti, S. Lloyd, L. Maccone. Sub-Rayleigh-diffraction-bound quantum imaging. Phys. Rev. A, 79, 013827(2009).

    [5] S. Zhou, L. Jiang. Modern description of Rayleigh’s criterion. Phys. Rev. A, 99, 013808(2019).

    [6] M. Tsang, R. Nair, X.-M. Lu. Quantum theory of superresolution for two incoherent optical point sources. Phys. Rev. X, 6, 031033(2016).

    [7] S. Guha. Structured optical receivers to attain superadditive capacity and the Holevo limit. Phys. Rev. Lett., 106, 240502(2011).

    [8] J. S. Sidhu, M. S. Bullock, S. Guha. Linear optics and photodetection achieve near-optimal unambiguous coherent state discrimination. Quantum, 7, 1025(2023).

    [9] X.-M. Lu, H. Krovi, R. Nair. Quantum-optimal detection of one-versus-two incoherent optical sources with arbitrary separation. npj Quantum Inf., 4(2018).

    [10] Z. Dutton, R. Kerviche, A. Ashok. Attaining the quantum limit of superresolution in imaging an object’s length via predetection spatial-mode sorting. Phys. Rev. A, 99, 033847(2019).

    [11] M. R. Grace, S. Guha. Identifying objects at the quantum limit for superresolution imaging. Phys. Rev. Lett., 129, 180502(2022).

    [12] C. Lupo, S. Pirandola. Ultimate precision bound of quantum and subwavelength imaging. Phys. Rev. Lett., 117, 190802(2016).

    [13] R. Nair, M. Tsang. Far-field superresolution of thermal electromagnetic sources at the quantum limit. Phys. Rev. Lett., 117, 190801(2016).

    [14] Z. Huang, C. Lupo. Quantum hypothesis testing for exoplanet detection. Phys. Rev. Lett., 127, 130502(2021).

    [15] M. Paúr, B. Stoklasa, Z. Hradil. Achieving the ultimate optical resolution. Optica, 3, 1144-1147(2016).

    [16] M. Paúr, B. Stoklasa, J. Grover. Tempering Rayleigh’s curse with PSF shaping. Optica, 5, 1177-1180(2018).

    [17] Y. Zhou, J. Yang, J. D. Hassett. Quantum-limited estimation of the axial separation of two incoherent point sources. Optica, 6, 534-541(2019).

    [18] A. A. Pushkina, G. Maltese, J. I. Costa-Filho. Superresolution linear optical imaging in the far field. Phys. Rev. Lett., 127, 253602(2021).

    [19] C. Zhou, J. Xin, Y. Li. Measuring small displacements of an optical point source with digital holography. Opt. Express, 31, 19336-19346(2023).

    [20] J. Frank, A. Duplinskiy, K. Bearne. Passive superresolution imaging of incoherent objects. Optica, 10, 1147-1152(2023).

    [21] W.-K. Tham, H. Ferretti, A. M. Steinberg. Beating Rayleigh’s curse by imaging using phase information. Phys. Rev. Lett., 118, 070801(2017).

    [22] M. Salit, J. Klein, L. Lust. Experimental characterization of a mode-separating photonic lantern for imaging applications. Appl. Opt., 59, 5319-5324(2020).

    [23] P. Boucher, C. Fabre, G. Labroille. Spatial optical mode demultiplexing as a practical tool for optimal transverse distance estimation. Optica, 7, 1621-1626(2020).

    [24] L. Santamaria, D. Pallotti, M. S. de Cumis. Spatial-mode demultiplexing for enhanced intensity and distance measurement. Opt. Express, 31, 33930-33944(2023).

    [25] C. Rouvière, D. Barral, A. Grateau. Ultra-sensitive separation estimation of optical sources. Optica, 11, 166-170(2024).

    [26] L. Santamaria, F. Sgobba, C. Lupo. Single-photon sub-Rayleigh precision measurements of a pair of incoherent sources of unequal intensity. Opt. Quantum, 2, 46-56(2024).

    [27] M. Gessner, C. Fabre, N. Treps. Superresolution limits from measurement crosstalk. Phys. Rev. Lett., 125, 100501(2020).

    [28] T. Linowski, K. Schlichtholz, G. Sorelli. Application range of crosstalk-affected spatial demultiplexing for resolving separations between unbalanced sources. New J. Phys., 25, 103050(2023).

    [29] K. Schlichtholz, T. Linowski, M. Walschaers. Practical tests for sub-Rayleigh source discriminations with imperfect demultiplexers. Opt. Quantum, 2, 29-34(2024).

    [30] J. Řehaček, Z. Hradil, B. Stoklasa. Multiparameter quantum metrology of incoherent point sources: towards realistic superresolution. Phys. Rev. A, 96, 062107(2017).

    [31] Z. Huang, C. Schwab, C. Lupo. Ultimate limits of exoplanet spectroscopy: a quantum approach. Phys. Rev. A, 107, 022409(2023).

    [32] J. Goodman. Introduction to Fourier Optics(2008).

    [33] J. H. Shapiro. The quantum theory of optical communications. IEEE J. Sel. Top. Quantum Electron., 15, 1547-1569(2009).

    [34] C. Lupo, V. Giovannetti, S. Pirandola. Enhanced quantum communication via optical refocusing. Phys. Rev. A, 84, 010303(2011).

    [35] C. Lupo, V. Giovannetti, S. Pirandola. Capacities of linear quantum optical systems. Phys. Rev. A, 85, 062314(2012).

    [36] G. Buonaiuto, C. Lupo. Sub-diffraction estimation, discrimination and learning of quantum states of light. arXiv(2024).

    [37] R. Nair, M. Tsang. Interferometric superlocalization of two incoherent optical point sources. Opt. Express, 24, 3684-3701(2016).

    [38] J. Lederberg. Signs of life: criterion-system of exobiology. Nature, 207, 9-13(1965).

    [39] J. E. Lovelock. A physical basis for life detection experiments. Nature, 207, 568-570(1965).

    Luigi Santamaria, Fabrizio Sgobba, Deborah Pallotti, Cosmo Lupo, "Single-photon super-resolved spectroscopy from spatial-mode demultiplexing," Photonics Res. 13, 865 (2025)
    Download Citation