• Laser & Optoelectronics Progress
  • Vol. 59, Issue 14, 1415020 (2022)
Lihua Hu1,2, Wenzhuang Yin1,2, Siyuan Xing2, Jifu Zhang1..., Qiulei Dong2 and Zhanyi Hu2,*|Show fewer author(s)
Author Affiliations
  • 1College of Computer Sciences and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi , China
  • 2National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    DOI: 10.3788/LOP202259.1415020 Cite this Article Set citation alerts
    Lihua Hu, Wenzhuang Yin, Siyuan Xing, Jifu Zhang, Qiulei Dong, Zhanyi Hu. 3D Reconstruction and Accuracy Evaluation of Ancient Chinese Architectural Patches Based on Depth Learning from Single Image[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415020 Copy Citation Text show less
    References

    [1] Bai Y B, Pan K L, Geng L. Signal processing of spatial convolutional neural network for laser ranging[J]. Chinese Journal of Lasers, 48, 2304001(2021).

    [2] Wu T F, Zhou Q, Lin J R et al. Frequency scanning interferometry absolute distance measurement[J]. Chinese Journal of Lasers, 48, 1918002(2021).

    [3] Xu G Q, Zhang Y F, Wan J W et al. Application of high-resolution three-dimensional imaging lidar[J]. Acta Optica Sinica, 41, 1628002(2021).

    [4] Gao S, Bai L Z. Monocular camera-based three-point laser pointer ranging and pose estimation method[J]. Acta Optica Sinica, 41, 0915001(2021).

    [5] Kang Y Q, Liu J, Wang Y et al. Low-dose CT 3D reconstruction using convolutional sparse coding and gradient L0-norm[J]. Acta Optica Sinica, 41, 0911005(2021).

    [6] Chen J, Zhang Y Q, Song P et al. Application of deep learning to 3D object reconstruction from a single image[J]. Acta Automatica Sinica, 45, 657-668(2019).

    [7] Eigen D, Puhrsch C, Fergus R. Depth map prediction from a single image using a multi-scale deep network[C], 2366-2374(2014).

    [8] Eigen D, Fergus R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[C], 2650-2658(2015).

    [9] Zoran D, Isola P, Krishnan D et al. Learning ordinal relationships for mid-level vision[C], 388-396(2015).

    [10] Cao Y, Wu Z F, Shen C H. Estimating depth from monocular images as classification using deep fully convolutional residual networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 28, 3174-3182(2018).

    [11] Fu H A, Gong M M, Wang C H et al. Deep ordinal regression network for monocular depth estimation[C], 2002-2011(2018).

    [12] Garg R, Kumar B G V, Carneiro G et al. Unsupervised CNN for single view depth estimation: geometry to the rescue[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016, 9912, 740-756(2016).

    [13] Xian K, Zhang J M, Wang O et al. Structure-guided ranking loss for single image depth prediction[C], 608-617(2020).

    [14] Godard C, Aodha O M, Brostow G J. Unsupervised monocular depth estimation with left-right consistency[C], 6602-6611(2017).

    [15] Zhou J S, Wang Y W, Qin K H et al. Moving indoor: unsupervised video depth learning in challenging environments[C], 8617-8626(2019).

    [16] Bian J W, Li Z C, Wang N Y et al. Unsupervised scale-consistent depth and ego-motion learning from monocular video[EB/OL]. https://arxiv.org/abs/1908.10553v1

    [17] Zhou T H, Brown M, Snavely N et al. Unsupervised learning of depth and ego-motion from video[C], 6612-6619(2017).

    [18] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [19] Godard C, Aodha O M, Firman M et al. Digging into self-supervised monocular depth estimation[C], 3827-3837(2019).

    [20] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 60, 91-110(2004).

    [21] Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 24, 381-395(1981).

    [22] Umeyama S. Least-squares estimation of transformation parameters between two point patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 376-380(1991).

    [23] Paszke A, Gross S, Chintala S et al. Automatic differentiation in PyTorch[C](2017).

    [24] Kingma D, Ba J. Adam: a method for stochastic optimization[EB/OL]. https://arxiv.org/abs/1412.6980

    [25] Ranjan A, Jampani V, Balles L et al. Competitive collaboration: joint unsupervised learning of depth, camera motion, optical flow and motion segmentation[C], 12232-12241(2019).

    Lihua Hu, Wenzhuang Yin, Siyuan Xing, Jifu Zhang, Qiulei Dong, Zhanyi Hu. 3D Reconstruction and Accuracy Evaluation of Ancient Chinese Architectural Patches Based on Depth Learning from Single Image[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415020
    Download Citation