• Journal of Inorganic Materials
  • Vol. 39, Issue 2, 162 (2023)
Kun BA1, Jianlu WANG1,2,*, and Meikang HAN2,*
Author Affiliations
  • 11. Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
  • 22. Institute of Optoelectronics and Shanghai Frontier Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.15541/jim20230400 Cite this Article
    Kun BA, Jianlu WANG, Meikang HAN. Perspectives for Infrared Properties and Applications of MXene[J]. Journal of Inorganic Materials, 2023, 39(2): 162 Copy Citation Text show less
    References

    [1] A VAHIDMOHAMMADI, J ROSEN, Y GOGOTSI. The world of two-dimensional carbides and nitrides (MXenes). Science, eabf1581(2021).

    [2] H M DING, M LI, Y B LI et al. Progress in structural tailoring and properties of ternary layered ceramics. Journal of Inorganic Materials, 845(2023).

    [3] K BA, D PU, X YANG et al. Billiard catalysis at Ti3C2 MXene/ MAX heterostructure for efficient nitrogen fixation. Applied Catalysis B: Environmental, 121755(2022).

    [4] M ALHABEB, K MALESKI, B ANASORI et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 7633(2017).

    [5] K MATTHEWS, T ZHANG, C E SHUCK et al. Guidelines for synthesis and processing of chemically stable two-dimensional V2CTx MXene. Chemistry of Materials, 499(2021).

    [6] M NAGUIB, M KURTOGLU, V PRESSER et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 4248(2011).

    [7] M SHEKHIREV, C E SHUCK, A SARYCHEVA et al. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Progress in Materials Science, 100757(2021).

    [8] X LI, Z HUANG, C E SHUCK et al. MXene chemistry, electrochemistry and energy storage applications. Nature Review Chemistry, 389(2022).

    [9] M HAN, K MALESKI, C E SHUCK et al. Tailoring electronic and optical properties of MXenes through forming solid solutions. Journal of the American Chemical Society, 19110(2020).

    [10] M LI, Q HUANG. Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two-dimensional nanolaminates MXenes. Journal of Inorganic Materials, 1(2020).

    [11] X XU, T GUO, M LANZA et al. Status and prospects of MXene-based nanoelectronic devices. Matter, 800(2023).

    [12] A LIPATOV, H LU, M ALHABEB et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Science Advances, eaat0491(2018).

    [13] D ZHANG, D SHAH, A BOLTASSEVA et al. MXenes for photonics. ACS Photonics, 1108(2022).

    [14] V MAUCHAMP, M BUGNET, E P BELLIDO et al. Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: electronic structure versus boundary effects. Physical Review B, 235428(2014).

    [15] T ZHAO, P XIE, H WAN et al. Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5-10 THz band. Nature Photonics, 622(2023).

    [16] M HAN, D ZHANG, C E SHUCK et al. Electrochemically modulated interaction of MXenes with microwaves. Nature Nanotechnology, 373(2023).

    [17] M HAN, Y GOGOTSI. Perspectives for electromagnetic radiation protection with MXenes. Carbon, 17(2023).

    [18] M HAN, D ZHANG, A SINGH et al. Versatility of infrared properties of MXenes. Materials Today, 31(2023).

    [19] T YUN, H KIM, A IQBAL et al. Electromagnetic shielding of monolayer MXene assemblies. Advanced Materials, 1906769(2020).

    [20] S UZUN, M HAN, C J STROBEL et al. Highly conductive and scalable Ti3C2Tx-coated fabrics for efficient electromagnetic interference shielding. Carbon, 382(2021).

    [21] Y Z ZHANG, Y WANG, Q JIANG et al. MXene printing and patterned coating for device applications. Advanced Materials, 1908486(2020).

    [22] T YUN, G S LEE, J CHOI et al. Multidimensional Ti3C2Tx MXene architectures via interfacial electrochemical self-assembly. ACS Nano, 10058(2021).

    [23] Y LI, C XIONG, H HUANG et al. 2D Ti3C2Tx MXenes: visible black but infrared white materials. Advanced Materials, 2103054(2021).

    [24] F LU, D SHI, P TAN et al. A novel infrared electrochromic device based on Ti3C2Tx MXene. Chemical Engineering Journal, 138324(2022).

    [25] A D DILLON, M J GHIDIU, A L KRICK et al. Highly conductive optical quality solution-processed films of 2D titanium carbide. Advanced Functional Materials, 4162(2016).

    [26] M HAN, C E SHUCK, A SINGH et al. Efficient microwave absorption with Vn+1CnTx MXenes. Cell Reports Physical Science, 101073(2022).

    [27] L LI, M SHI, X LIU et al. Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Advanced Functional Materials, 2101381(2021).

    [28] Z DENG, L LI, P TANG et al. Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano, 16976(2022).

    [29] G CAI, J H CIOU, Y LIU et al. Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Science Advances, eaaw7956(2019).

    [30] Y H CHEN, J LI, M L REN et al. Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/ dielectric interfaces. Applied Physics Letters, 261912(2011).

    [31] W L BARNES, A DEREUX, T W EBBESEN. Surface plasmon subwavelength optics. Nature, 824(2003).

    [32] E COLIN-ULLOA, A FITZGERALD, K MONTAZERI et al. Ultrafast spectroscopy of plasmons and free carriers in 2D MXenes. Advanced Materials, e2208659(2023).

    [33] J K EL-DEMELLAWI, S LOPATIN, J YIN et al. Tunable multipolar surface plasmons in 2D Ti3C2Tx MXene flakes. ACS Nano, 8485(2018).

    [34] K CHAUDHURI, M ALHABEB, Z WANG et al. Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photonics, 1115(2018).

    [35] M GHOUSSOUB, M XIA, P N DUCHESNE et al. Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy & Environmental Science, 1122(2019).

    [36] F ZHAO, Y GUO, X ZHOU et al. Materials for solar-powered water evaporation. Nature Reviews Materials, 388(2020).

    [37] B ZHANG, Q GU, C WANG et al. Self-assembled hydrophobic/ hydrophilic porphyrin-Ti3C2Tx MXene Janus membrane for dual-functional enabled photothermal desalination. ACS Applied Materials & Interfaces, 3762(2021).

    [38] B ZHANG, P W WONG, J GUO et al. Transforming Ti3C2Tx MXene’s intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination. Nature Communications, 3315(2022).

    [39] H LIN, S GAO, C DAI et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 16235(2017).

    [40] P CHENG, D WANG, P SCHAAF. A review on photothermal conversion of solar energy with nanomaterials and nanostructures: from fundamentals to applications. Advanced Sustainable Systems, 2200115(2022).

    [41] D XU, Z LI, L LI et al. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Advanced Functional Materials, 2000712(2020).

    [42] X FAN, L LIU, X JIN et al. MXene Ti3C2Tx for phase change composite with superior photothermal storage capability. Journal of Materials Chemistry A, 14319(2019).

    [43] X YANG, L LAN, L LI et al. Collective photothermal bending of flexible organic crystals modified with MXene-polymer multilayers as optical waveguide arrays. Nature Communications, 3627(2023).

    [44] D XI, M XIAO, J CAO et al. NIR light-driving barrier-free group rotation in nanoparticles with an 88.3% photothermal conversion efficiency for photothermal therapy. Advanced Materials, 1907855(2020).

    [45] X ZHAO, L Y WANG, C Y TANG et al. Smart Ti3C2Tx MXene fabric with fast humidity response and Joule heating for healthcare and medical therapy applications. ACS Nano, 8793(2020).

    [46] K BA, J WANG. Advances in solution-processed quantum dots based hybrid structures for infrared photodetector. Materials Today, 119(2022).

    [47] A ROGALSKI, J ANTOSZEWSKI, L FARAONE. Third-generation infrared photodetector arrays. Journal of Applied Physics, 091101(2009).

    [48] J TANG, H WAN, L CHANG et al. Tunable infrared sensing properties of MXenes enabled by intercalants. Advanced Optical Materials, 2200623(2022).

    [49] C HU, H CHEN, L LI et al. Ti3C2Tx MXene-RAN van der Waals heterostructure-based flexible transparent NIR photodetector array for 1024 pixel image sensing application. Advanced Materials Technologies, 2101639(2022).

    [50] Z LIU, J K EL-DEMELLAWI, O M BAKR et al. Plasmonic Nb2CTx MXene-MAPbI3 heterostructure for self-powered visible-NIR photodiodes. ACS Nano, 7904(2022).

    [51] K MALESKI, C E SHUCK, A T FAFARMAN et al. The broad chromatic range of two-dimensional transition metal carbides. Advanced Optical Materials, 2001563(2020).

    [52] J L HART, K HANTANASIRISAKUL, A C LANG et al. Control of MXenes’ electronic properties through termination and intercalation. Nature Communications, 522(2019).

    [53] T T NGUYEN, G MURALI, M PATEL et al. MXene-integrated metal oxide transparent photovoltaics and self-powered photodetectors. ACS Applied Energy Materials, 7134(2022).

    [54] H XU, A REN, J WU et al. Recent advances in 2D MXenes for photodetection. Advanced Functional Materials, 2000907(2020).

    Kun BA, Jianlu WANG, Meikang HAN. Perspectives for Infrared Properties and Applications of MXene[J]. Journal of Inorganic Materials, 2023, 39(2): 162
    Download Citation