• Semiconductor Optoelectronics
  • Vol. 44, Issue 4, 530 (2024)
CHEN Ruohui1, LU Yilin1, ZHAO Xingyan1, QIU Yang1..., ZHENG Shaonan1, ZHONG Qize1, DONG Yuan1,2 and HU Ting1|Show fewer author(s)
Author Affiliations
  • 1School of Microelectronics, Shanghai University
  • 2Shanghai Collaborative Innovation Center of Intelligent Sensing Chip Technology, Shanghai University, Shanghai 201800, CHN
  • show less
    DOI: 10.16818/j.issn1001-5868.2024032703 Cite this Article
    CHEN Ruohui, LU Yilin, ZHAO Xingyan, QIU Yang, ZHENG Shaonan, ZHONG Qize, DONG Yuan, HU Ting. Research on the Near-Infrared Single-Layer Metalens with Large Field-of-View[J]. Semiconductor Optoelectronics, 2024, 44(4): 530 Copy Citation Text show less
    References

    [1] Kildishev A, Boltasseva A, Shalaev V. Planar photonics with metasurfaces[J]. Science, 2013, 339(6215): 1289.

    [2] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat. Nanotechnol., 2015, 10(11): 937-943.

    [3] Kuznetsov A I, Miroshnichenko A E, Brongersma M L, et al. Optically resonant dielectric nanostructures[J]. Science, 2016, 354(6314): agg2472.

    [4] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(3054): 333-337.

    [5] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194.

    [6] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896-900.

    [7] He Q, Zhang F, Pu M B, et al. Monolithic metasurface spatial differentiator enabled by asymmetric photonic spin-orbit interactions[J]. Nanophotonics, 2021, 10(1): 741-748.

    [8] Joo W J, Kyoung J, Esfandyarpour M, et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch[J]. Science, 2020, 370(3515): 459-463.

    [9] Zhang Z J, Luo J, Song M W, et al. Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography[J]. Appl. Phys. Lett., 2015, 107(24): 241904.

    [10] Dong Y, Xu Z J, Li N X, et al. Si metasurface half-wave plates demonstrated on a 12-inch CMOS platform[J]. Nanophotonics, 2020, 9(1): 149-157.

    [11] Hu T, Zhong Q Z, Li N X, et al. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging[J]. Nanophotonics, 2020, 9(4): 823-830.

    [12] Divitt S, Zhu W Q, Zhang C, et al. Ultrafast optical pulse shaping using dielectric metasurfaces[J]. Science, 2019, 364(6443): 890-894.

    [13] Hu Y Q, Luo X H, Chen Y Q, et al. 3D-integrated metasurfaces for full-colour holography[J]. Light Sci. Appl., 2019, 8: 86.

    [14] Zheng G N, Muehlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat. Nanotechnol., 2015, 10(4): 308-312.

    [15] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys. Rev. Lett., 2017, 118(11): 113901.

    [16] Lee G Y, Hong J Y, Hwang S, et al. Metasurface eyepiece for augmented reality[J]. Nat. Commun., 2018, 9: 4562.

    [17] Wang S M, Wu P C, Su V C, et al. Broadband achromatic optical metasurface devices[J]. Nat. Commun., 2017, 8: 187.

    [18] Liu W W, Li Z C, Cheng H, et al. Metasurface enabled wide-angle fourier lens[J]. Adv. Mater., 2018, 30(23): 1706368.

    [19] Lin Z, Groever B, Capasso F, et al. Topology-optimized multilayered metaoptics[J]. Phys. Rev. Appl., 2018, 9(4): 044030.

    [20] Zhang X Y, Li Q, Liu F F, et al. Controlling angular dispersions in optical metasurfaces[J]. Light Sci. Appl., 2020, 9(1): 76.

    [21] Aieta F, Genevet P, Kats M, et al. Aberrations of flat lenses and aplanatic metasurfaces[J]. Opt. Express, 2013, 21(25): 31530-31539.

    [22] Arbabi A, Arbabi E, Kamali S M, et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations[J]. Nat. Commun., 2016, 7: 13682.

    [23] Martins A, Li K Z, Li J T, et al. On metalenses with arbitrarily wide field of view[J]. ACS Photonics, 2020, 7(8): 2073-2079.

    [24] Wang Y L, Zhang S, Liu M Z, et al. Compact meta-optics infrared camera based on a polarization-insensitive metalens with a large field of view[J]. Opt. Lett., 2023, 48(17): 4709-4712.

    [25] Engelberg J, Zhou C, Mazurski N, et al. Near-IR wide-field-of-view huygens metalens for outdoor imaging applications[J]. Nanophotonics, 2020, 9(2): 361-370.

    [26] Xie T, Zhang F, Pu M B, et al. Ultrathin, wide-angle, and high-resolution meta-imaging system via rear-position wavevector filter[J]. Laser Photonics Rev., 2023, 17(9): 2300119.

    [27] Pu M B, Li X, Guo Y H, et al. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing[J]. Opt. Express, 2017, 25(25): 31471-31477.

    [28] Luo X G, Zhang F, Pu M B, et al. Recent advances of wide-angle metalenses: principle, design, and applications[J]. Nanophotonics, 2022, 11(1): 1-20.

    CHEN Ruohui, LU Yilin, ZHAO Xingyan, QIU Yang, ZHENG Shaonan, ZHONG Qize, DONG Yuan, HU Ting. Research on the Near-Infrared Single-Layer Metalens with Large Field-of-View[J]. Semiconductor Optoelectronics, 2024, 44(4): 530
    Download Citation