• PhotoniX
  • Vol. 4, Issue 1, 38 (2023)
Chenshuang Zhang1, Bin Yu1,*, Fangrui Lin1, Soham Samanta1..., Huanhuan Yu1, Wei Zhang2, Yingying Jing1, Chunfeng Shang3,4, Danying Lin1,**, Ke Si5, Wei Gong5 and Junle Qu1,***|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2Department of Computer Science and Technology, Anhui University of Finance and Economics, Bengbu 233030, China
  • 3Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
  • 4Shenzhen Institute of Neuroscience, Shenzhen, 518057, China
  • 5MOE Frontier Science Center for Brain Science & Brain-Machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
  • show less
    DOI: 10.1186/s43074-023-00115-2 Cite this Article
    Chenshuang Zhang, Bin Yu, Fangrui Lin, Soham Samanta, Huanhuan Yu, Wei Zhang, Yingying Jing, Chunfeng Shang, Danying Lin, Ke Si, Wei Gong, Junle Qu. Deep tissue super-resolution imaging with adaptive optical two-photon multifocal structured illumination microscopy[J]. PhotoniX, 2023, 4(1): 38 Copy Citation Text show less
    References

    [1] Al-Hasani R, Gowrishankar R, Schmitz GP, Pedersen CE, Marcus DJ, Shirley SE, et al. Ventral tegmental area GABAergic inhibition of cholinergic interneurons in the ventral nucleus accumbens shell promotes reward reinforcement. Nat Neurosci. 2021;24(10):1414–28.

    [2] Yuste R, Denk W. Dendritic spines as basic functional units of neuronal integration. Nature. 1995;375(6355):682–4.

    [3] Nimchinsky EA, Sabatini BL, Svoboda K. Structure and function of dendritic spines. Annu Rev Physiol. 2002;64:313–53.

    [4] Ji N, Shroff H, Zhong H, Betzig E. Advances in the speed and resolution of light microscopy. Curr Opin Neurobiol. 2008;18(6):605–16.

    [5] Turcotte R, Liang Y, Tanimoto M, Zhang Q, Li Z, Koyama M, et al. Dynamic super-resolution structured illumination imaging in the living brain. Proc Natl Acad Sci U S A. 2019;116(19):9586–91.

    [6] Gribble KD, Walker LJ, Saint-Amant L, Kuwada JY, Granato M. The synaptic receptor Lrp4 promotes peripheral nerve regeneration. Nat Commun. 2018;9(1):2389.

    [7] Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990;248(4951):73–6.

    [8] Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods. 2005;2(12):932–40.

    [9] Ingaramo M, York AG, Wawrzusin P, Milberg O, Hong A, Weigert R, et al. Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue. Proc Natl Acad Sci U S A. 2014;111(14):5254–9.

    [10] Winter PW, York AG, Nogare DD, Ingaramo M, Christensen R, Chitnis A, et al. Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples. Optica. 2014;1(3):181–91.

    [11] Zheng W, Wu Y, Winter P, Fischer R, Nogare DD, Hong A, et al. Adaptive optics improves multiphoton super-resolution imaging. Nat Methods. 2017;14(9):869–72.

    [12] Muller CB, Enderlein J. Image scanning microscopy. Phys Rev Lett. 2010;104(19): 198101.

    [13] Sheppard CJ, Mehta SB, Heintzmann R. Superresolution by image scanning microscopy using pixel reassignment. Opt Lett. 2013;38(15):2889–92.

    [14] Ji N, Milkie DE, Betzig E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat Methods. 2010;7(2):141–7.

    [15] Sahu P, Mazumder N. Advances in adaptive optics-based two-photon fluorescence microscopy for brain imaging. Lasers Med Sci. 2020;35(2):317–28.

    [16] Ji N, Freeman J, Smith SL. Technologies for imaging neural activity in large volumes. Nat Neurosci. 2016;19(9):1154–64.

    [17] Booth M. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci Appl. 2014;3(4):e165–165.

    [18] Zhou Z, Huang J, Li X, Gao X, Chen Z, Jiao Z, et al. Adaptive optical microscopy via virtual-imaging-assisted wavefront sensing for high-resolution tissue imaging. PhotoniX. 2022;3(1):1–20.

    [19] Shu Y, Sun J, Lyu J, Fan Y, Zhou N, Ye R, et al. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy. PhotoniX. 2022;3(1):24.

    [20] Wu J, Lu Z, Jiang D, Guo Y, Qiao H, Zhang Y, et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell. 2021;184(12):3318–32e17.

    [21] Tao X, Norton A, Kissel M, Azucena O, Kubby J. Adaptive optical two-photon microscopy using autofluorescent guide stars. Opt Lett. 2013;38(23):5075–8.

    [22] Wang K, Milkie DE, Saxena A, Engerer P, Misgeld T, Bronner ME, et al. Rapid adaptive optical recovery of optimal resolution over large volumes. Nat Methods. 2014;11(6):625–8.

    [23] Wang K, Sun W, Richie CT, Harvey BK, Betzig E, Ji N. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat Commun. 2015;6:7276.

    [24] Kashiwagi Y, Higashi T, Obashi K, Sato Y, Komiyama NH, Grant SGN, et al. Computational geometry analysis of dendritic spines by structured illumination microscopy. Nat Commun. 2019;10(1):1285.

    [25] Ke M-T, Nakai Y, Fujimoto S, Takayama R, Yoshida S, Kitajima Tomoya S, et al. Super-resolution Mapping of neuronal circuitry with an Index-Optimized Clearing Agent. Cell Rep. 2016;14(11):2718–32.

    [26] Balcioglu A, Gillani R, Doron M, Burnell K, Ku T, Erisir A, et al. Mapping thalamic innervation to individual L2/3 pyramidal neurons and modeling their ‘readout’ of visual input. Nat Neurosci. 2023;26(3):470–80.

    [27] Ruthazer ES, Li J, Cline HT. Stabilization of axon branch dynamics by synaptic maturation. J Neurosci. 2006;26(13):3594–603.

    [28] Niell CM, Meyer MP, Smith SJ. In vivo imaging of synapse formation on a growing dendritic arbor. Nat Neurosci. 2004;7(3):254–60.

    [29] Huang B, Li J, Yao B, Yang Z, Lam EY, Zhang J, et al. Enhancing image resolution of confocal fluorescence microscopy with deep learning. PhotoniX. 2023;4(1):1–22.

    [30] Liao J, Zhang C, Xu X, Zhou L, Yu B, Lin D, et al. Deep-MSIM: fast image reconstruction with deep learning in multifocal structured illumination microscopy. Adv Sci. 2023;10(27):2300947.

    [31] Kim D, Keesling A, Omran A, Levine H, Bernien H, Greiner M, et al. Large-scale uniform optical focus array generation with a phase spatial light modulator. Opt Lett. 2019;44(12):3178–81.

    Chenshuang Zhang, Bin Yu, Fangrui Lin, Soham Samanta, Huanhuan Yu, Wei Zhang, Yingying Jing, Chunfeng Shang, Danying Lin, Ke Si, Wei Gong, Junle Qu. Deep tissue super-resolution imaging with adaptive optical two-photon multifocal structured illumination microscopy[J]. PhotoniX, 2023, 4(1): 38
    Download Citation