
- Matter and Radiation at Extremes
- Vol. 8, Issue 1, 014405 (2023)
Abstract
I. INTRODUCTION
In laser plasma physics, quasi-static self-generated magnetic fields play important roles in particle acceleration,1–4 photon emission,5 laser fusion,6–10 and other high-energy-density processes.11–14 Among the mechanisms for the generation of quasi-static magnetic fields, the inverse Faraday effect (IFE) is of particular importance. The IFE usually refers to the phenomenon in which a quasi-static axial magnetic field is self-generated when a circularly polarized beam propagates in a plasma. Since its first observation in a plasma,15 the IFE has been widely studied, and a number of explanations of this phenomenon have been proposed.16–30
In early work, IFE was explained using a magnetic dipole moment model,16 in which the strength of the magnetic field is proportional to the electron number density, since electron motion is circular in a circularly polarized laser. This phenomenological model was developed further through the incorporation of collisionless cold electron fluid equations.17–21 According to this nonlinear beating current model, when the electromagnetic waves are circularly polarized, the gradients in both plasma density and laser intensity will result in a nonlinear azimuthal current,17 which leads to the generation of an axial magnetic field. When the electromagnetic waves are linearly polarized, this current will disappear, and no magnetic field will be generated. Since this nonlinear azimuthal current is generated by the electron quiver velocity beating with the high-frequency density perturbation, the generated magnetic field will dissipate quickly when the laser is no longer present. In Refs. 18–20, the effect of the diamagnetic current was taken into account through the introduction of conservation of generalized vorticity.31 The results of the nonlinear beating current model were compared with those of particle-in-cell (PIC) simulations in Ref. 21.
When laser absorption and the accompanying angular momentum (AM) transfer are taken into account, it is found that linearly polarized beams can also lead to the generation of axial magnetic fields,22 in contrast to the predictions of the nonlinear beating current model. It is known that a circularly polarized laser carries spin angular momentum (SAM).32 When electromagnetic waves are absorbed by a plasma, the SAM of the waves will be transferred to the plasma, leading to the generation of an axial magnetic field.23–26 As pointed out by Allen et al.,33 laser beams with Laguerre–Gaussian (LG) modes carry orbital angular momentum (OAM), and Ali et al.22 explained how the axial magnetic field was generated due to OAM transfer during laser absorption. Recent advances in laser technology34–38 have enabled the production of laser beams possessing intense OAM, which, with account taken of laser absorption, indicates that there is significant self-generation of magnetic fields by these LG beams.27–30,39 Nuter et al.29 found that when an intense (1018 W/cm2) radially polarized laser propagates in a plasma, the AM of the laser can be transferred to the plasma without any dissipative effect, and a megagauss quasi-static axial magnetic field can be generated. This nondissipative AM absorption was further found to be caused by a process resembling direct laser acceleration, which is significant for intense lasers.39 Longman and Fedosejevs30 explored the spatial and temporal evolutions of magnetic fields driven by ultrahigh-intensity (1020 W/cm2) beams carrying AM, and demonstrated the generation of kilotesla magnetic fields that persisted for several picoseconds after the laser had left the plasma.
In comparison, the nonlinear beating current mechanism18–20 may be dominant in the presence of large plasma density gradients, such as in plasma channels,19 and the IFE mechanism based on AM absorption22,23,25,26 may become important when significant AM is transferred from laser beam to plasma.29,30 It should be noted that almost all the previous studies27–30 of magnetic fields generated by LG beams were based on AM absorption theory, with little attention being paid to the nonlinear beating current model.18–20 It is unclear whether LG beams can generate axial magnetic fields when AM absorption is negligible. Besides, laser beams can possess unconventional polarization states, as in the case of full Poincaré (FP) beams,40–43 which contain all the possible laser polarization states on the surface of the Poincaré sphere. We are interested in whether such a laser can generate an axial magnetic field when propagating in a plasma, and the possible distribution of the magnetic field as well as its relation to the polarization states is also of interest.
In this paper, based on the nonlinear beating current model,18–20 the IFE of weakly relativistic linearly and circularly polarized LG beams is reconsidered, and the IFE of weakly relativistic FP beams is investigated in detail. Starting from the cold electron fluid equations and the conservation of generalized vorticity, an integrated theoretical model that takes into account the polarization states and LG modes is developed. The theoretical results show that for linearly polarized LG beams, no axial magnetic field can be generated. For circularly polarized LG beams, although axial magnetic fields can be generated, these fields are related only to the laser intensity, not to the helical phase structure of the LG beams. For FP beams that can be constructed by applying different azimuthal modes of LG beams on the two orthogonal polarizations,40 azimuthally varying axial magnetic fields can be generated, which is quite different from the circularly polarized case. The structures of such magnetic fields are affected mainly by the LG mode difference Δl and the initial phase difference Δφ of the two orthogonally polarized beams forming the FP beam. We also perform three-dimensional (3D) PIC simulations. To enable accurate comparisons of the simulation and theoretical results and keep other IFE mechanisms out of play, special care is taken in making the following choices of parameters: a long pulse with moderate intensity (5 × 1016 W/cm2) is considered to interact with a cold plasma (10 eV, 1.1 × 1020 cm−3), with the effects of collisions and parametric instabilities being neglected. The simulation results verify the theoretical results in terms of the distribution of magnetic fields, the distribution of source currents, and the conservation of generalized vorticity. In addition, it is noted that an axial magnetic field with arbitrary azimuthal distribution can be obtained if the polarization distribution of the constituent laser is properly designed using the linear superposition method. This provides a new azimuthal degree of freedom for magnetized plasma devices.37,44–46
The rest of the paper is organized as follows. In Sec. II, the theoretical model and corresponding results are given. In Sec. III, 3D PIC simulations are conducted to verify the corresponding theoretical results. In Sec. IV, we provide an intuitive explanation of these results and demonstrate a method for obtaining an arbitrary azimuthal distribution of the axial magnetic field. Conclusions are presented in Sec. V.
II. THEORETICAL MODEL
Electromagnetic waves propagating in the x direction can be expressed as
We begin with the cold relativistic electron fluid equations and Maxwell equations
The low-frequency component of Eq. (3) describes the generation of the quasi-static magnetic fields and can be written as
First,
The other key current
Combining Eqs. (5), (9), and (10) and eliminating
The above analysis is applicable to laser beams with different distributions and polarizations. In this paper, we focus mainly on laser beams with LG modes. Near the focal plane (x = 0), the complex amplitude of LG beams with p = 0 (where p is the radial index) can be written as
For linearly polarized LG beams,
The magnetic fields shown above are related only to the laser intensity
Figures 1(a)–1(d) display the transverse distributions of quasi-static axial magnetic fields calculated from Eqs. (11) and (14) for lasers with different polarization states propagating in a plasma. The initial density profile of the plasma is
Figure 1.Transverse distributions of the quasi-static axial self-generated magnetic fields (normalized by
By constructing different l modes of LG beams on the two orthogonal polarizations, we introduce the helical index of LG beams into the magnetic field generation, which is reflected by azimuthal variation of the magnetic field. It is demonstrated that the distribution of the magnetic field is affected mainly by Δl and Δφ, which is quite different from the azimuthally homogeneous magnetic field generated by circular polarization. In Sec. III, we verify the above theoretical results by 3D PIC simulations.
III. 3D PIC SIMULATIONS
We perform a series of 3D kinetic simulations using the fully relativistic PIC code EPOCH.47 The main simulation parameters are the same as those used in the above theoretical analysis. The laser propagates in the x direction with wavelength λ = 1 µm. Its intensity remains constant after reaching the maximum ay = az = 0.2 in three laser periods. The radius of the waist of the LG beams in the PIC simulations is w0,y = w0,z = 4 µm. The simulation box is 10 µm (x) × 20 µm (y) × 20 µm (z), with 500 × 320 × 320 cells. For the electrons, 100 particles are applied per cell, and the ions are set to be immobile. The plasma is located at 2 < x < 8 µm. The distribution of the initial electron number density is
Figures 1(e)–1(h) show the transverse distributions of the quasi-static axial magnetic fields obtained in PIC simulations for different modes of lasers propagating in a plasma at t = 66.67 fs. The quasi-static magnetic fields and the related azimuthal currents are obtained by averaging the instantaneous magnetic fields and currents over two laser periods (60 < t < 66.67 fs) and then averaging along the laser propagation direction. The distributions of the axial magnetic fields given by the 3D PIC simulations shown in Figs. 1(e)–1(h) are quantitatively in good agreement with those given by the theoretical model in Figs. 1(a)–1(d).
Furthermore, we examine the theoretical model in detail by confirming the distribution of the azimuthal components of currents
Figure 2.Transverse distributions of different azimuthal currents (normalized by
The assumption of generalized vorticity conservation in the theoretical model can also be verified by the PIC simulations. This conservation law indicates that if the generalized vorticity is initially zero,
Figure 3.Magnetic field (normalized by
IV. DISCUSSION
We have constructed a self-consistent theoretical model for calculating the axial magnetic field induced by the nonlinear azimuthal current and the diamagnetic current. The soundness of this model has been comprehensively verified through 3D PIC simulations in terms of the distributions of magnetic fields and the source currents, as well as the conservation of generalized vorticity. Here, in the framework of the electron magnetic momentum model,16 we present an intuitive explanation of why these magnetic fields vary with azimuth θ.
Figure 4(a) shows the intensity distribution on the focal plane for a laser with ly = 1, lz = −1, and Δφ = −π/2, together with the polarization state distribution marked by the small ellipses. The white and green ellipses represent left- and right-handed laser polarization states, respectively. The laser polarization changes azimuthally, which indicates different electron motions at different azimuths. Figures 4(b)–4(e) present the trajectories of electrons in this laser for one laser period T0 near the red points in Fig. 4(a). The characteristic scale length of electron motion is about 0.06λ, which indicates that the electrons mainly move locally, owing to the relatively low laser intensity. On θ = arctan(z/y) = π/4 and 3π/4, the laser can be regarded as linearly polarized, and the electrons oscillate along a certain direction [shown in Fig. 4(c) and 4(e)]. On θ = 0 and π/2, the laser can be viewed as circularly polarized, and the electrons move circularly, as shown in Fig. 4(b) and 4(d). It is found that on θ = 0, the direction of circular movement is opposite to that on θ = π/2, which indicates that the directions of the magnetic fields generated by the magnetic dipole moments are opposite for θ = 0 and θ = π/2. The variation of the axial magnetic field on other azimuths can be analyzed similarly.
Figure 4.(a) Distribution of laser intensity with laser parameters
In addition to the polarization distribution, Eq. (11) implies that the initial density distribution ns also plays a role. As well as the super-Gaussian density distribution n0,0 applied above, another two density profiles are also studied, and the axial magnetic fields generated are shown in Fig. 5. One density profile is a plasma channel,
Figure 5.Transverse distributions of the quasi-static axial self-generated magnetic fields (normalized by
Note that the density gradient of n0,1 is opposite to that of n0,0, and so the corresponding nonlinear current jnl,θ is opposite according to Eq. (14), which is verified by the red solid and red dotted lines in Fig. 6. However, the magnetic field distributions in the two cases are quite similar, as can be seen by comparing Fig. 1(b) and 5(a). This suggests that the characteristics of the generated magnetic fields cannot be determined only by jnl,θ, and the diamagnetic currents jdm,θ should also be taken into account. The green solid and green dotted lines in Fig. 6 show jdm,θ corresponding to these two cases. It can be seen that jdm,θ in the n0,0 case peaks at r < rCH, whereas it peaks at r > rCH in the n0,1 case. This leads to a similar sinusoidal-like distribution of the total azimuthal current along r in both cases, as shown by the black solid and black dotted lines in Fig. 6. Considering that the magnetic field can be calculated as
Figure 6.Distributions of different azimuthal currents (normalized by
Such unique distributions of axial magnetic fields provide a new azimuthal degree of freedom in designing magnetized plasma-based devices.37,46 It can be proved that, in principle, arbitrary distributions of axial magnetic fields in the azimuthal direction can be generated. Since the electromagnetic waves are weakly relativistic, the relativistic factor can be approximated as
As a coda, we present the ladybug-like magnetic field shown in Fig. 7. It is generated by the above method using a laser with
Figure 7.Distribution of the axial magnetic field (normalized by
It is worth noting that the results given by the theoretical model are in good agreement with those given by PIC simulations, which can be mainly attributed to three factors. First, laser absorption is negligible in our weakly relativistic (5 × 1016 W/cm2) laser plasma interaction, where the effects of collisions and parametric instabilities are neglected. Thus, AM absorption, which plays a dominant role in Refs. 29, 30, and 39, is not of concern. If the AM absorption is significant, the electrons can acquire an appreciable low-frequency velocity
V. CONCLUSION
The inverse Faraday effect has been extended to full Poincaré beams, and a novel scheme for generating azimuthally dependent axial magnetic fields has been proposed. Starting from fluid theory and conservation of generalized vorticity, we have constructed an integrated theoretical model of the quasi-static magnetic field generated by both the nonlinear azimuthal current and the diamagnetic current. This model predicts that the self-generated axial magnetic field varies azimuthally for a full Poincaré beam propagating in a plasma. The structures of such magnetic fields are determined by the Laguerre–Gaussian mode difference Δl and the initial phase difference Δφ of the composing orthogonally polarized lasers. Three-dimensional particle-in-cell simulation results are in good agreement with the theoretical model both qualitatively and quantitatively. In addition, it is noted that an arbitrary azimuthally varying distribution of the axial magnetic field can be obtained by the linear superposition method, which provides a potential new azimuthal degree of freedom in the design of magnetized plasma devices.
ACKNOWLEDGMENTS
Acknowledgment. This research was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 11975014 and by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant Nos. XDA25050400 and XDA25010200. The numerical calculations in this paper were performed on the supercomputing system at the Supercomputing Center of the University of Science and Technology of China.
APPENDIX: SIMULATION RESULTS OF WEAKLY RELATIVISTIC GAUSSIAN AND LG BEAMS
PIC simulations of weakly relativistic Gaussian beam plasma interactions were performed. A comparison of the theoretical and simulation results for the magnetic field is shown in
Figure 8.Distributions of axial magnetic fields (normalized by
Figure 9.Distributions of axial magnetic fields (normalized by
References
[1] M.Tanimoto, M.Tanimoto, S.Kato, E.Miura, N.Saito, K.Koyama, J. and, S.Kato, M.Tanimoto, S.Kato, E.Miura, N.Saito, K.Koyama, J. and, E.Miura, M.Tanimoto, S.Kato, E.Miura, N.Saito, K.Koyama, J. and, N.Saito, M.Tanimoto, S.Kato, E.Miura, N.Saito, K.Koyama, J. and, K.Koyama, M.Tanimoto, S.Kato, E.Miura, N.Saito, K.Koyama, J. and, J. K.Koga. Direct electron acceleration by stochastic laser fields in the presence of self-generated magnetic fields. Phys. Rev. E, 68, 026401(2003).
[2] X. H.Yuan, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, A. P. L.Robinson, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, M. N.Quinn, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, D. C.Carroll, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, M.Borghesi, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, R. J.Clarke, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, R. G.Evans, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, J.Fuchs, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, P.Gallegos, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, L.Lancia, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, D.Neely, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, K.Quinn, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, L.Romagnani, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, G.Sarri, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, P. A.Wilson, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, P.McKenna. Effect of self-generated magnetic fields on fast-electron beam divergence in solid targets. New J. Phys., 12, 063018(2010).
[3] B.Liu, B.Liu, Y.Wang H., J.Liu, B.Fu L., J.Xu Y., Q.Yan X., X. and, H. Y.Wang, B.Liu, Y.Wang H., J.Liu, B.Fu L., J.Xu Y., Q.Yan X., X. and, J.Liu, B.Liu, Y.Wang H., J.Liu, B.Fu L., J.Xu Y., Q.Yan X., X. and, L. B.Fu, B.Liu, Y.Wang H., J.Liu, B.Fu L., J.Xu Y., Q.Yan X., X. and, Y. J.Xu, B.Liu, Y.Wang H., J.Liu, B.Fu L., J.Xu Y., Q.Yan X., X. and, X. Q.Yan, B.Liu, Y.Wang H., J.Liu, B.Fu L., J.Xu Y., Q.Yan X., X. and, X. T.He. Generating overcritical dense relativistic electron beams via self-matching resonance acceleration. Phys. Rev. Lett., 110, 045002(2013).
[4] Z.Gong, Z.Gong, F.Mackenroth, T.Wang, Q.Yan X., T.Toncian, A. and, F.Mackenroth, Z.Gong, F.Mackenroth, T.Wang, Q.Yan X., T.Toncian, A. and, T.Wang, Z.Gong, F.Mackenroth, T.Wang, Q.Yan X., T.Toncian, A. and, X. Q.Yan, Z.Gong, F.Mackenroth, T.Wang, Q.Yan X., T.Toncian, A. and, T.Toncian, Z.Gong, F.Mackenroth, T.Wang, Q.Yan X., T.Toncian, A. and, A. V.Arefiev. Direct laser acceleration of electrons assisted by strong laser-driven azimuthal plasma magnetic fields. Phys. Rev. E, 102, 013206(2020).
[5] D. J.Stark, J.Stark D., T.Toncian, A. and, T.Toncian, J.Stark D., T.Toncian, A. and, A. V.Arefiev. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field. Phys. Rev. Lett., 116, 185003(2016).
[6] M. A.Yates, A.Yates M., B.van D., H.Rutkowski, G.Kyrala, J. and, , D. B.van Hulsteyn, A.Yates M., B.van D., H.Rutkowski, G.Kyrala, J. and, , H.Rutkowski, A.Yates M., B.van D., H.Rutkowski, G.Kyrala, J. and, , G.Kyrala, A.Yates M., B.van D., H.Rutkowski, G.Kyrala, J. and, , J. U.Brackbill, A.Yates M., B.van D., H.Rutkowski, G.Kyrala, J. and, . Experimental evidence for self-generated magnetic fields and remote energy deposition in laser-irradiated targets. Phys. Rev. Lett., 49, 1702-1704(1982).
[7] M.Tabak, M.Tabak, J.Hammer, E.Glinsky M., L.Kruer W., C.Wilks S., J.Woodworth, M.Campbell E., D.Perry M., R. and, J.Hammer, M.Tabak, J.Hammer, E.Glinsky M., L.Kruer W., C.Wilks S., J.Woodworth, M.Campbell E., D.Perry M., R. and, M. E.Glinsky, M.Tabak, J.Hammer, E.Glinsky M., L.Kruer W., C.Wilks S., J.Woodworth, M.Campbell E., D.Perry M., R. and, W. L.Kruer, M.Tabak, J.Hammer, E.Glinsky M., L.Kruer W., C.Wilks S., J.Woodworth, M.Campbell E., D.Perry M., R. and, S. C.Wilks, M.Tabak, J.Hammer, E.Glinsky M., L.Kruer W., C.Wilks S., J.Woodworth, M.Campbell E., D.Perry M., R. and, J.Woodworth, M.Tabak, J.Hammer, E.Glinsky M., L.Kruer W., C.Wilks S., J.Woodworth, M.Campbell E., D.Perry M., R. and, E. M.Campbell, M.Tabak, J.Hammer, E.Glinsky M., L.Kruer W., C.Wilks S., J.Woodworth, M.Campbell E., D.Perry M., R. and, M. D.Perry, M.Tabak, J.Hammer, E.Glinsky M., L.Kruer W., C.Wilks S., J.Woodworth, M.Campbell E., D.Perry M., R. and, R. J.Mason. Ignition and high gain with ultrapowerful lasers. Phys. Plasmas, 1, 1626-1634(1994).
[8] R.Kodama, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, P. A.Norreys, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, K.Mima, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, A. E.Dangor, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, R. G.Evans, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, H.Fujita, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, Y.Kitagawa, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, K.Krushelnick, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, T.Miyakoshi, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, N.Miyanaga, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, T.Norimatsu, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, S. J.Rose, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, T.Shozaki, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, K.Shigemori, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, A.Sunahara, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, M.Tampo, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, K. A.Tanaka, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, Y.Toyama, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, T.Yamanaka, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, M.Zepf. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature, 412, 798-802(2001).
[9] H.-b.Cai, H.-b.Cai, P.Zhu S., M.Chen, S.-z.Wu, T.He X., K.Mima and, S. P.Zhu, H.-b.Cai, P.Zhu S., M.Chen, S.-z.Wu, T.He X., K.Mima and, M.Chen, H.-b.Cai, P.Zhu S., M.Chen, S.-z.Wu, T.He X., K.Mima and, S.-z.Wu, H.-b.Cai, P.Zhu S., M.Chen, S.-z.Wu, T.He X., K.Mima and, X. T.He, H.-b.Cai, P.Zhu S., M.Chen, S.-z.Wu, T.He X., K.Mima and, K.Mima. Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas. Phys. Rev. E, 83, 036408(2011).
[10] W. A.Farmer, A.Farmer W., M.Koning J., J.Strozzi D., E.Hinkel D., F.Berzak L., S.Jones O., M. and, J. M.Koning, A.Farmer W., M.Koning J., J.Strozzi D., E.Hinkel D., F.Berzak L., S.Jones O., M. and, D. J.Strozzi, A.Farmer W., M.Koning J., J.Strozzi D., E.Hinkel D., F.Berzak L., S.Jones O., M. and, D. E.Hinkel, A.Farmer W., M.Koning J., J.Strozzi D., E.Hinkel D., F.Berzak L., S.Jones O., M. and, L. F.Berzak Hopkins, A.Farmer W., M.Koning J., J.Strozzi D., E.Hinkel D., F.Berzak L., S.Jones O., M. and, O. S.Jones, A.Farmer W., M.Koning J., J.Strozzi D., E.Hinkel D., F.Berzak L., S.Jones O., M. and, M. D.Rosen. Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment. Phys. Plasmas, 24, 052703(2017).
[11] E. M.Epperlein, M.Epperlein E., M. G.Haines. Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation. Phys. Fluids, 29, 1029-1041(1986).
[12] Q.Jia, Q.Jia, K.Mima, H.-b.Cai, T.Taguchi, H.Nagatomo, X. and, K.Mima, Q.Jia, K.Mima, H.-b.Cai, T.Taguchi, H.Nagatomo, X. and, H.-b.Cai, Q.Jia, K.Mima, H.-b.Cai, T.Taguchi, H.Nagatomo, X. and, T.Taguchi, Q.Jia, K.Mima, H.-b.Cai, T.Taguchi, H.Nagatomo, X. and, H.Nagatomo, Q.Jia, K.Mima, H.-b.Cai, T.Taguchi, H.Nagatomo, X. and, X. T.He. Self-generated magnetic dipoles in weakly magnetized beam-plasma system. Phys. Rev. E, 91, 023107(2015).
[13] J. M.Tian, M.Tian J., B.Cai H., S.Zhang W., H.Zhang E., B.Du, S. and, H. B.Cai, M.Tian J., B.Cai H., S.Zhang W., H.Zhang E., B.Du, S. and, W. S.Zhang, M.Tian J., B.Cai H., S.Zhang W., H.Zhang E., B.Du, S. and, E. H.Zhang, M.Tian J., B.Cai H., S.Zhang W., H.Zhang E., B.Du, S. and, B.Du, M.Tian J., B.Cai H., S.Zhang W., H.Zhang E., B.Du, S. and, S. P.Zhu. Generation mechanism of 100 MG magnetic fields in the interaction of ultra-intense laser pulse with nanostructured target. High Power Laser Sci. Eng., 8, E16(2020).
[14] H.-b.Cai, H.-b.Cai, X.-x.Yan, P.-l.Yao, S.-p.Zhu and, X.-x.Yan, H.-b.Cai, X.-x.Yan, P.-l.Yao, S.-p.Zhu and, P.-l.Yao, H.-b.Cai, X.-x.Yan, P.-l.Yao, S.-p.Zhu and, S.-p.Zhu. Hybrid fluid–particle modeling of shock-driven hydrodynamic instabilities in a plasma. Matter Radiat. Extremes, 6, 035901(2021).
[15] J.Deschamps, J.Deschamps, M.Fitaire, M.Lagoutte and, M.Fitaire, J.Deschamps, M.Fitaire, M.Lagoutte and, M.Lagoutte. Inverse Faraday effect in a plasma. Phys. Rev. Lett., 25, 1330-1332(1970).
[16] A. D.Steiger, D.Steiger A., C. H.Woods. Intensity-dependent propagation characteristics of circularly polarized high-power laser radiation in a dense electron plasma. Phys. Rev. A, 5, 1467-1474(1972).
[17] Z. M.Sheng, M.Sheng Z., J.Meyer-ter-Vehn. Inverse Faraday effect and propagation of circularly polarized intense laser beams in plasmas. Phys. Rev. E, 54, 1833-1842(1996).
[18] V. I.Berezhiani, I.Berezhiani V., M.Mahajan S., N. and, S. M.Mahajan, I.Berezhiani V., M.Mahajan S., N. and, N. L.Shatashvili. Theory of magnetic field generation by relativistically strong laser radiation. Phys. Rev. E, 55, 995-1001(1997).
[19] A.Kim, A.Kim, M.Tushentsov, D.Anderson, M.Lisak and, M.Tushentsov, A.Kim, M.Tushentsov, D.Anderson, M.Lisak and, D.Anderson, A.Kim, M.Tushentsov, D.Anderson, M.Lisak and, M.Lisak. Axial magnetic fields in relativistic self-focusing channels. Phys. Rev. Lett., 89, 095003(2002).
[20] A. A.Frolov. Excitation of magnetic fields by a circularly polarized laser pulse in a plasma channel. Plasma Phys. Rep., 30, 698-709(2004).
[21] N.Naseri, N.Naseri, Y.Bychenkov V., W.Rozmus and, V. Y.Bychenkov, N.Naseri, Y.Bychenkov V., W.Rozmus and, W.Rozmus. Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas. Phys. Plasmas, 17, 083109(2010).
[22] S.Ali, S.Ali, R.Davies J., J. and, J. R.Davies, S.Ali, R.Davies J., J. and, J. T.Mendonca. Inverse Faraday effect with linearly polarized laser pulses. Phys. Rev. Lett., 105, 035001(2010).
[23] M. G.Haines. Generation of an axial magnetic field from photon spin. Phys. Rev. Lett., 87, 135005(2001).
[24] Z.Najmudin, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, M.Tatarakis, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, A.Pukhov, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, E. L.Clark, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, R. J.Clarke, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, A. E.Dangor, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, J.Faure, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, V.Malka, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, D.Neely, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, M. I. K.Santala, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, K.Krushelnick. Measurements of the inverse Faraday effect from relativistic laser interactions with an underdense plasma. Phys. Rev. Lett., 87, 215004(2001).
[25] I. Y.Kostyukov, Y.Kostyukov I., G.Shvets, J.Fisch N., J. and, G.Shvets, Y.Kostyukov I., G.Shvets, J.Fisch N., J. and, N. J.Fisch, Y.Kostyukov I., G.Shvets, J.Fisch N., J. and, J. M.Rax. Magnetic-field generation and electron acceleration in relativistic laser channel. Phys. Plasmas, 9, 636-648(2002).
[26] G.Shvets, G.Shvets, J.Fisch N., J. and, N. J.Fisch, G.Shvets, J.Fisch N., J. and, J. M.Rax. Magnetic field generation through angular momentum exchange between circularly polarized radiation and charged particles. Phys. Rev. E, 65, 046403(2002).
[27] D.Wu, and D.Wu, J. W.Wang. Magetostatic amplifier with tunable maximum by twisted-light plasma interactions. Plasma Phys. Controlled Fusion, 59, 095010(2017).
[28] Y.Shi, Y.Shi, J.Vieira, M. R., R.Bingham, F.Shen B., R. and, , J.Vieira, Y.Shi, J.Vieira, M. R., R.Bingham, F.Shen B., R. and, , R. M. G. M.Trines, Y.Shi, J.Vieira, M. R., R.Bingham, F.Shen B., R. and, , R.Bingham, Y.Shi, J.Vieira, M. R., R.Bingham, F.Shen B., R. and, , B. F.Shen, Y.Shi, J.Vieira, M. R., R.Bingham, F.Shen B., R. and, , R. J.Kingham, Y.Shi, J.Vieira, M. R., R.Bingham, F.Shen B., R. and, . Magnetic field generation in plasma waves driven by copropagating intense twisted lasers. Phys. Rev. Lett., 121, 145002(2018).
[29] R.Nuter, R.Nuter, P.Korneev, I.Thiele, V.Tikhonchuk and, P.Korneev, R.Nuter, P.Korneev, I.Thiele, V.Tikhonchuk and, I.Thiele, R.Nuter, P.Korneev, I.Thiele, V.Tikhonchuk and, V.Tikhonchuk. Plasma solenoid driven by a laser beam carrying an orbital angular momentum. Phys. Rev. E, 98, 033211(2018).
[30] A.Longman, and A.Longman, R.Fedosejevs. Kilo-Tesla axial magnetic field generation with high intensity spin and orbital angular momentum beams. Phys. Rev. Res., 3, 043180(2021).
[31] R. N.Sudan. Mechanism for the generation of 109 G magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target. Phys. Rev. Lett., 70, 3075-3078(1993).
[32] R. A.Beth. Mechanical detection and measurement of the angular momentum of light. Phys. Rev., 50, 115-125(1936).
[33] L.Allen, L.Allen, W.Beijersbergen M., J. R., J. and, M. W.Beijersbergen, L.Allen, W.Beijersbergen M., J. R., J. and, R. J. C.Spreeuw, L.Allen, W.Beijersbergen M., J. R., J. and, J. P.Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).
[34] Y.Shi, Y.Shi, B.Shen, L.Zhang, X.Zhang, W.Wang, Z.Xu and, B.Shen, Y.Shi, B.Shen, L.Zhang, X.Zhang, W.Wang, Z.Xu and, L.Zhang, Y.Shi, B.Shen, L.Zhang, X.Zhang, W.Wang, Z.Xu and, X.Zhang, Y.Shi, B.Shen, L.Zhang, X.Zhang, W.Wang, Z.Xu and, W.Wang, Y.Shi, B.Shen, L.Zhang, X.Zhang, W.Wang, Z.Xu and, Z.Xu. Light fan driven by a relativistic laser pulse. Phys. Rev. Lett., 112, 235001(2014).
[35] J.Vieira, J.Vieira, M. R., P.Alves E., A.Fonseca R., T.Mendonça J., R.Bingham, P.Norreys, L. and, R. M. G. M.Trines, J.Vieira, M. R., P.Alves E., A.Fonseca R., T.Mendonça J., R.Bingham, P.Norreys, L. and, E. P.Alves, J.Vieira, M. R., P.Alves E., A.Fonseca R., T.Mendonça J., R.Bingham, P.Norreys, L. and, R. A.Fonseca, J.Vieira, M. R., P.Alves E., A.Fonseca R., T.Mendonça J., R.Bingham, P.Norreys, L. and, J. T.Mendon?a, J.Vieira, M. R., P.Alves E., A.Fonseca R., T.Mendonça J., R.Bingham, P.Norreys, L. and, R.Bingham, J.Vieira, M. R., P.Alves E., A.Fonseca R., T.Mendonça J., R.Bingham, P.Norreys, L. and, P.Norreys, J.Vieira, M. R., P.Alves E., A.Fonseca R., T.Mendonça J., R.Bingham, P.Norreys, L. and, L. O.Silva. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering. Nat. Commun., 7, 10371(2016).
[36] A.Leblanc, A.Leblanc, A.Denoeud, L.Chopineau, G.Mennerat, P.Martin, F.Quéré and, A.Denoeud, A.Leblanc, A.Denoeud, L.Chopineau, G.Mennerat, P.Martin, F.Quéré and, L.Chopineau, A.Leblanc, A.Denoeud, L.Chopineau, G.Mennerat, P.Martin, F.Quéré and, G.Mennerat, A.Leblanc, A.Denoeud, L.Chopineau, G.Mennerat, P.Martin, F.Quéré and, P.Martin, A.Leblanc, A.Denoeud, L.Chopineau, G.Mennerat, P.Martin, F.Quéré and, F.Quéré. Plasma holograms for ultrahigh-intensity optics. Nat. Phys., 13, 440-443(2017).
[37] K.Qu, K.Qu, Q.Jia, N. and, Q.Jia, K.Qu, Q.Jia, N. and, N. J.Fisch. Plasma
[38] W. P.Wang, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, C.Jiang, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, H.Dong, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, X. M.Lu, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, J. F.Li, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, R. J.Xu, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, Y. J.Sun, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, L. H.Yu, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, Z.Guo, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, X. Y.Liang, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, Y. X.Leng, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, R. X.Li, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, Z. Z.Xu. Hollow plasma acceleration driven by a relativistic reflected hollow laser. Phys. Rev. Lett., 125, 034801(2020).
[39] R.Nuter, R.Nuter, P.Korneev, E.Dmitriev, I.Thiele, V. and, P.Korneev, R.Nuter, P.Korneev, E.Dmitriev, I.Thiele, V. and, E.Dmitriev, R.Nuter, P.Korneev, E.Dmitriev, I.Thiele, V. and, I.Thiele, R.Nuter, P.Korneev, E.Dmitriev, I.Thiele, V. and, V. T.Tikhonchuk. Gain of electron orbital angular momentum in a direct laser acceleration process. Phys. Rev. E, 101, 053202(2020).
[40] A. M.Beckley, M.Beckley A., G.Brown T., M. and, T. G.Brown, M.Beckley A., G.Brown T., M. and, M. A.Alonso. Full Poincaré beams. Opt. Express, 18, 10777-10785(2010).
[41] L.-G.Wang. Optical forces on submicron particles induced by full Poincaré beams. Opt. Express, 20, 20814-20826(2012).
[42] W.Zhu, W.Zhu, V.Shvedov, W.She, W.Krolikowski and, V.Shvedov, W.Zhu, V.Shvedov, W.She, W.Krolikowski and, W.She, W.Zhu, V.Shvedov, W.She, W.Krolikowski and, W.Krolikowski. Transverse spin angular momentum of tightly focused full Poincaré beams. Opt. Express, 23, 34029-34041(2015).
[43] W.Lin, W.Lin, Y.Ota, Y.Arakawa, S.Iwamoto and, Y.Ota, W.Lin, Y.Ota, Y.Arakawa, S.Iwamoto and, Y.Arakawa, W.Lin, Y.Ota, Y.Arakawa, S.Iwamoto and, S.Iwamoto. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers. Phys. Rev. Res., 3, 023055(2021).
[44] C.Thaury, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, F.Quéré, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, J.-P.Geindre, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, A.Levy, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, T.Ceccotti, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, P.Monot, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, M.Bougeard, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, F.Réau, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, P.d’Oliveira, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, P.Audebert, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, R.Marjoribanks, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, P.Martin. Plasma mirrors for ultrahigh-intensity optics. Nat. Phys., 3, 424-429(2007).
[45] S.Monchocé, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, S.Kahaly, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, A.Leblanc, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, L.Videau, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, P.Combis, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, F.Réau, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, D.Garzella, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, P.D’Oliveira, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, P.Martin, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, F.Quéré. Optically controlled solid-density transient plasma gratings. Phys. Rev. Lett., 112, 145008(2014).
[46] S.Weng, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, Q.Zhao, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, Z.Sheng, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, W.Yu, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, S.Luan, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, M.Chen, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, L.Yu, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, M.Murakami, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, W. B.Mori, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, J.Zhang. Extreme case of Faraday effect: Magnetic splitting of ultrashort laser pulses in plasmas. Optica, 4, 1086-1091(2017).
[47] T. D.Arber, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, K.Bennett, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, C. S.Brady, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, A.Lawrence-Douglas, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, M. G.Ramsay, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, N. J.Sircombe, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, P.Gillies, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, R. G.Evans, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, H.Schmitz, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, A. R.Bell, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, C. P.Ridgers. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controlled Fusion, 57, 113001(2015).
[48] S.-p.Zhu, S.-p.Zhu, Y.Zheng C., X. and, C. Y.Zheng, S.-p.Zhu, Y.Zheng C., X. and, X. T.He. A theoretical model for a spontaneous magnetic field in intense laser plasma interaction. Phys. Plasmas, 10, 4166-4168(2003).
[49] B.Qiao, B.Qiao, S.-p.Zhu, Y.Zheng C., X. and, S.-p.Zhu, B.Qiao, S.-p.Zhu, Y.Zheng C., X. and, C. Y.Zheng, B.Qiao, S.-p.Zhu, Y.Zheng C., X. and, X. T.He. Quasistatic magnetic and electric fields generated in intense laser plasma interaction. Phys. Plasmas, 12, 053104(2005).
[50] B.Qiao, B.Qiao, T.He X., S.-p.Zhu and, X. T.He, B.Qiao, T.He X., S.-p.Zhu and, S.-p.Zhu. Fluid theory for quasistatic magnetic field generation in intense laser plasma interaction. Phys. Plasmas, 13, 053106(2006).

Set citation alerts for the article
Please enter your email address