[1] Markus A, Simon G, Klemens H, et al. Quantum optomechanics-throwing a glance [J]. J. Opt. Soc. Am. B, 2010, 27(6): A189-A197.
[2] J hne K, Genes C, Hammerer K, et al. Cavity-assisted squeezing of a mechanical oscillator [J]. Phys. Rev. A, 2008, 79(6): 063819-063826.
[3] LaHaye M D, Buu O, Camarota B, et al. Approaching the quantum limit of a nanomechanical resonator [J]. Science, 2004, 304(5667): 74-77.
[4] Ekinci K L, Yang Y T, Roukes M L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems [J]. J. Appl. Phys., 2004, 95(5): 2682-2689.
[5] Caves C M. Quantum-mechanical radiation-pressure fluctuations in an interferometer [J]. Phys. Rev. Lett., 1980, 45(2): 75-79.
[6] Marshall W, Simon C, Bouwmeester D. Towards quantum superpositions of a mirror [J]. Phys. Rev. Lett., 2003, 91(13): 130401-130404.
[7] Kippenberg T J, Vahala K J. Cavity optomechanics: backaction at the mesoscale [J]. Science, 2008, 321(5893): 1172-1176.
[8] Gigan S, Bohm H R, Paternostro M, et al. Self-cooling of a micromirror by radiation pressure [J]. Nature, 2006, 444(2): 67-70.
[9] Kleckner D, Bouwmeester D. Sub-kelvin optical cooling of a micromechanical resonator [J]. Nature, 2006, 444(2): 75-78.
[10] Poggio M, Degen C L, Mamin H J, et al. Feedback cooling of a cantilever’s fundamental mode below 5 mK [J]. Phys. Rev. Lett., 2007, 99(1): 017201-017205.
[11] Arcizet O, Cohadon P F, Briant T. et al. Radiation-pressure cooling and optomechanical instability of a micromirror [J]. Nature, 2006, 444(2): 71-74.
[12] Bhattacharya M, Meystre P. Trapping and cooling a mirror to its quantum mechanical ground state [J]. Phys. Rev. Lett., 2007, 99(7): 073601-073605.
[13] Wilson-Rae I, Nooshi N, Zwerger W, et al. Theory of ground state cooling of a mechanical oscillator using dynamical backaction [J]. Phys. Rev. Lett., 2007, 99(9): 093901-093905.
[14] Marquardt F, Chen J P, Clerk A A, et al. Quantum theory of cavity-assisted sideband cooling of mechanical motion [J]. Phys. Rev. Lett., 2007, 99(9): 093902-093906.
[15] Mancini S, Vitali D, Tombesi P. Optomechanical cooling of a macroscopic oscillator by homodyne feedback [J]. Phys. Rev. Lett., 1998, 80(4): 688-692.
[16] Teufel J D, Harlow J W, Regal C A, et al. Dynamical backaction of microwave fields on a nanomechanical oscillator [J]. Phys. Rev. Lett., 2008, 101(19): 197203-197207.
[17] Schliesser A, Riviere R, Anetsberger G, et al. Resolved-sideband cooling of a micromechanical oscillator [J]. Nat. Phys., 2008, 4(5): 415-419.
[18] Park Y S, Wang H L. Resolved-sideband and cryogenic cooling of an optomechanical resonator [J]. Nat. Phys., 2009, 5(7): 489-493.
[19] Li Y, Wang Y D, Xue F, et al. Quantum theory of transmission line resonator-assisted cooling of a micromechanical resonator [J]. Phys. Rev. B, 2009, 78(13): 134301-134309.
[20] Tian L. Ground state cooling of a nanomechanical resonator via parametric linear coupling [J]. Phys. Rev. B, 2007, 79(19): 193407-193411.
[21] Groblacher S, Hammerer K, Michael R. et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field [J]. Nature, 2009, 460(7256): 724-727.
[22] Dobrindt J M, Wilson-Rae I, Kippenberg T J. Parametric normal-mode splitting in cavity optomechanics [J]. Phys. Rev. Lett., 2008, 101(26): 263602-263606.
[23] Huang S M, Agarwal G S. Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity [J]. Phys. Rev. A, 2009, 80(3): 033807-033814.
[24] Genes C, Vitali D, Tombesi P, et al. Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes [J]. Phys. Rev. A, 2008, 77(3): 033804-033813.
[25] Biancofiore C, Karuza M, Galassi M, et al. Quantum dynamics of a high-finesse optical cavity coupled with a thin semi-transparent membrane [J]. Quantum Physics, 2011, arXiv: 1102. 2210vl.
[26] Walls D F, Milburn G J. Quantum Optics [M]. Berlin: Springer-Verlag, 1998.
[27] Hurwitz A. Selected Papers on Mathematical Trends in Control Theory [M]. New York: Dover, 1964.
[28] DeJesus E X, Kaufman C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations [J]. Phys. Rev. A, 1987, 35(12): 5288-5291.
[29] Gardiner C W, Zoller P. Quantum Noise [M]. Berlin: Springer-Verlag, 1991.
[30] Giovannetti V, Vitali D. Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion [J]. Phys. Rev. A, 2001, 63(2): 023812-023820.
[31] Dantan A, Genes C, et al. Self-cooling of a movable mirror to the ground state using radiation pressure [J]. Phys. Rev. A, 2008, 77(1): 011804-011808.
[32] Weisbuch C, Nishioka M, Ishikawa A, et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity [J]. Phys. Rev. Lett., 1992, 69(23): 3314-3317.
[33] Wallraff A, Schuster D I, Blais A, et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics [J]. Nature, 2004, 431(7005): 162-167.
[34] Thompson R J, Rempe G, et al. Observation of normal-mode splitting for an atom in an optical cavity [J]. Phys. Rev. Lett., 1992, 68(8): 1132-1135.
[35] Fleischhauer M, Imamoglu A, et al. Electromagnetically induced transparency: Optics in coherent media [J]. Rev. Mod. Phys., 2005, 77(2): 633-673.
[36] He W, Li J J, Zhu K D. Coupling-rate determination based on radiation-pressure-induced normal mode splitting in cavity optomechanical systems [J]. Opt. Lett., 2010, 35(3): 339-341.
[37] Corbitt T, Wipf C, et al. Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK [J]. Phys. Rev. Lett., 2007, 99(16): 160801-160804.
[38] Verlot P, Tavernarakis A, Briant T, et al. Backaction amplification and quantum limits in optomechanical measurements [J]. Phys. Rev. Lett., 2010, 104(13): 133602-133606.