• Infrared and Laser Engineering
  • Vol. 52, Issue 7, 20220888 (2023)
Peng Song1, Yang Bai2, Chao Yang1, Chuang Li1..., Changxi Xue1, Jiawen Ding1 and Jie Guo1|Show fewer author(s)
Author Affiliations
  • 1School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • 2Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • show less
    DOI: 10.3788/IRLA20220888 Cite this Article
    Peng Song, Yang Bai, Chao Yang, Chuang Li, Changxi Xue, Jiawen Ding, Jie Guo. Turning method for correcting centrifugal force error of large-diameter off-axis aspheric surface[J]. Infrared and Laser Engineering, 2023, 52(7): 20220888 Copy Citation Text show less
    Experimental diagram of SPDT
    Fig. 1. Experimental diagram of SPDT
    (a) Machining process and (b) processing results of aluminum alloy off-axis aspheric mirror
    Fig. 2. (a) Machining process and (b) processing results of aluminum alloy off-axis aspheric mirror
    Centrifugal force deformation process. (a) Initial blank surface shape; (b) Centrifugal force loading elastic deformation; (c) Turning process; (d) Centrifugal force unloading elastic recovery
    Fig. 3. Centrifugal force deformation process. (a) Initial blank surface shape; (b) Centrifugal force loading elastic deformation; (c) Turning process; (d) Centrifugal force unloading elastic recovery
    Off-axis aspheric processing model. (a) Traditional processing model; (b) Suppression centrifugal force coordinate transformation machining model
    Fig. 4. Off-axis aspheric processing model. (a) Traditional processing model; (b) Suppression centrifugal force coordinate transformation machining model
    Simulation process of centrifugal force deformation
    Fig. 5. Simulation process of centrifugal force deformation
    Simulation results of centrifugal force deformation. (a) Simulation result; (b) The lowest point X-Y cross section; (b) The lowest point Z-Y cross section
    Fig. 6. Simulation results of centrifugal force deformation. (a) Simulation result; (b) The lowest point X-Y cross section; (b) The lowest point Z-Y cross section
    Off-axis aspheric surface morphology. (a) Traditional processing model; (b) Suppression centrifugal force coordinate transformation machining model
    Fig. 7. Off-axis aspheric surface morphology. (a) Traditional processing model; (b) Suppression centrifugal force coordinate transformation machining model
    (a) Physical map and (b) test result of off-axis aspheric surface aluminum alloy
    Fig. 8. (a) Physical map and (b) test result of off-axis aspheric surface aluminum alloy
    kR/mm D/mm H/mm B1,B2,···
    −0.9985785761968.0803206000
    Table 1. Off-axis aspheric surface parameters
    ρ/kg·m3$ v $A/MPa B/MPa nCm${C}_{p}/{\rm{J} }\cdot { {\rm{kg} } }^{-1}\cdot { {\rm{K} } }^{-1}$
    27000.331102560.340.0151.0896
    Table 2. Johnson-Cook intrinsic model of 6061 aluminum alloy material
    ParameterValue
    Feed rate/μm·rev–13
    Spindle speed/r·min–1180
    Depth of cut/μm3
    Tool radius/mm0.95
    MaterialsRSA6061
    Table 3. Processing parameters of SPDT
    Peng Song, Yang Bai, Chao Yang, Chuang Li, Changxi Xue, Jiawen Ding, Jie Guo. Turning method for correcting centrifugal force error of large-diameter off-axis aspheric surface[J]. Infrared and Laser Engineering, 2023, 52(7): 20220888
    Download Citation