[1] Hanna D C, Jauncey I M, Percival R M et al. Continuous-wave oscillation of a monomode thulium-doped fibre laser[J]. Electronics Letters, 24, 1222-1223(1988).
[2] Goodno G D, Book L D, Rothenberg J E. 600-W single-mode single-frequency thulium fiber laser amplifier[J]. Proceedings of SPIE, 7195, 71950Y(2009).
[3] Ehrenreich T, Leveille R, Majid I et al. 1-kW, all-glass Tm: fiber laser[J]. Proceedings of SPIE, 7580, 758016(2010).
[4] Jackson S D, King T A. High-power diode-cladding-pumped Tm-doped silica fiber laser[J]. Optics letters, 23, 1462-1464(1998).
[5] Clarkson W A, Barnes N P, Turner P W et al. High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm[J]. Optics Letters, 27, 1989-1991(2002).
[6] Shen D Y, Sahu J K, Clarkson W A. High-power widely tunable Tm: fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6 µm[J]. Optics Express, 14, 6084-6090(2006).
[7] Slobodtchikov E, Moulton P F, EfficientFrith G.. high-power, Tm-doped silica fiber laser[C], MF2(2007).
[8] Moulton P F, Rines G A, Slobodtchikov E V et al. Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 85-92(2009).
[9] Hu Z Y, Yan P, Xiao Q R et al. 227-W output all-fiberized Tm-doped fiber laser at 1908 nm[J]. Chinese Physics B, 23, 104206(2014).
[10] Liu J, Shi H, Liu C et al. High-power narrow-linewidth thulium-doped all-fiber MOPA[C], 27A1_3(2015).
[11] Yin K, Zhu R Z, Zhang B et al. 300 W-level, wavelength-widely-tunable, all-fiber integrated thulium-doped fiber laser[J]. Optics Express, 24, 11085-11090(2016).
[12] Liu Y Z, Xing Y B, Liao L et al. 530 W all-fiber continuous-wave Tm-doped fiber laser[J]. Acta Physica Sinica, 69, 184209(2020).
[13] Yang C S, Chen D, Zhao Q L et al. Research progress of 2.0 μm-band Tm-doped continuous wave single-frequency fiber lasers[J]. Chinese Journal of Lasers, 44, 0201006(2017).
[14] McComb T S, Sims R A, Willis C C C et al. High-power widely tunable thulium fiber lasers[J]. Applied Optics, 49, 6236-6242(2010).
[15] Guo C Z, Shen D Y, Long J Y et al. High-power and widely tunable Tm-doped fiber laser at 2 μm[J]. Chinese Optics Letters, 10, 091406(2012).
[16] Chen S X, Jung Y, Alam S U et al. Ultra-wideband operation of a tunable thulium fibre laser offering tunability from 1679—1992 nm[C](2017).
[17] Li Z, Alam S U, Jung Y et al. All-fiber, ultra-wideband tunable laser at 2 μm[J]. Optics Letters, 38, 4739-4742(2013).
[18] Yin K, Zhang B, Xue G et al. High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm[J]. Optics Express, 22, 19947-19952(2014).
[19] Wang X, Jin X X, Zhou P et al. High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier[J]. Optics Express, 23, 3382-3389(2015).
[20] Chen X, Dai D Z, Zhang Y et al. Wavelength-flexible thulium-doped fiber laser based on digital micromirror array[J]. Micromachines, 11, 1036(2020).
[21] Liu F, Liu P, Feng X et al. Tandem-pumped, tunable thulium-doped fiber laser in 2.1 μm wavelength region[J]. Optics Express, 27, 8283-8290(2019).
[22] Hardy L A, Fried N M. Comparison of first-generation (1908 nm) and second-generation (1940 nm) thulium fiber lasers for ablation of kidney stones[J]. Optical Engineering, 58, 096101(2019).
[23] Chollet F, Goedgebuer J P, Porte H et al. Electrooptic narrow linewidth wavelength tuning and intensity modulation of an erbium fiber ring laser[J]. IEEE Photonics Technology Letters, 8, 1009-1011(1996).
[24] Wang F, Shen D Y, Fan D Y et al. Spectral narrowing of cladding-pumped high-power Tm-doped fiber laser using a volume Bragg grating-pair[J]. Applied Physics Express, 3, 112701(2010).
[25] Tao M M, Huang Q J, Yang P L et al. Narrow linewidth CW amplification of a Tm-doped double-clad fiber MOPA system[J]. Optik, 125, 1141-1143(2014).
[26] Liu J, Liu C, Shi H X et al. 342 W narrow-linewidth continuous-wave thulium-doped all-fiber laser[J]. Acta Physica Sinica, 65, 194209(2016).
[27] Bai Y, Yan F P, Feng T et al. Ultra-narrow-linewidth fiber laser in 2 μm band using saturable absorber based on PM-TDF[J]. Chinese Journal of Lasers, 46, 0101003(2019).
[28] Cook J, Roumayah P, Shin D J et al. Narrow linewidth 80 W tunable thulium-doped fiber laser[J]. Optics & Laser Technology, 146, 107568(2022).
[29] Shen D Y, Pearson L, Wang P et al. Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power[J]. Optics Express, 16, 11021-11026(2008).
[30] Yu G Y, Chang J, Wang Q P et al. A theoretical model of thulium-doped silica fiber’s ASE in the 1900 nm waveband[J]. Optoelectronics Letters, 6, 45-47(2010).
[31] Hu Z Y, Yan P, Liu Q et al. High-power single-stage thulium-doped superfluorescent fiber source[J]. Applied Physics B, 118, 101-107(2015).
[32] Khamis M A, Ennser K. Wide broadband ASE source based on thulium-doped fibre for 2 µm wavelength region[C], 141-146(2017).
[33] Aubrecht J, Peterka P, Honzátko P et al. Broadband thulium-doped fiber ASE source[J]. Optics Letters, 45, 2164-2167(2020).
[34] Michalewska Z, Michalewski J, Nawrocki J. Swept-source OCT[J]. Retina Today, 50-56(2013).
[35] Pal D, Sen R, Pal A. Design of all-fiber laser at 1.95 µm for soft tissue surgery[C](2015).
[36] Sypin V, Volkov A, Myasnikov D et al. QCW thulium fiber laser for medical application[C], S1-10(2016).
[37] Pal D, Sen R, Pal A. Design of all‐fiber thulium laser in CW and QCW mode of operation for medical use[J]. Physica Status Solidi C, 14, 1600127(2017).
[38] Pal D, Chowdhury S D, Sen R et al. QCW thulium fiber laser at 1.94 µm for kidney stone fragmentation[C].
[39] Limongelli J R, Allee E, Bieniek M et al. A 564 W QCW thulium fiber oscillator pumped at 793 nm[C], JTu5A.4(2020).
[40] Eichhorn M, Jackson S D. High-pulse-energy actively Q-switched Tm3+-doped silica 2 μm fiber laser pumped at 792 nm[J]. Optics Letters, 32, 2780-2782(2007).
[41] Willis C C C, Shah L, Baudelet M et al. High-energy Q-switched Tm3+-doped polarization maintaining silica fiber laser[J]. Proceedings of SPIE, 7580, 758003(2010).
[42] Stutzki F, Jansen F, Jauregui C et al. 2.4 mJ, 33 W Q-switched Tm-doped fiber laser with near diffraction-limited beam quality[J]. Optics Letters, 38, 97-99(2013).
[43] Li L, Zhang B, Yin K et al. 1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05 μm[J]. Optics Express, 23, 18098-18105(2015).
[44] Romano C, Jaouën Y, Tench R E et al. kW pulsed nanosecond TDFL with direct modulation[J]. Proceedings of SPIE, 10897, 1089708(2019).
[45] Grzes P, Swiderski J. Gain-switched 2-μm fiber laser system providing kilowatt peak-power mode-locked resembling pulses and its application to supercontinuum generation in fluoride fibers[J]. IEEE Photonics Journal, 10, 1500408(2018).
[46] Liu S L, Dou Z Y, Zhang B et al. High repetition rate gain-switched thulium-doped fiber laser pumped by 1.6 μm noise-like pulses[J]. Optics & Laser Technology, 138, 106856(2021).
[47] Kadwani P, Modsching N, Sims R A et al. Q-switched thulium-doped photonic crystal fiber laser[J]. Optics Letters, 37, 1664-1666(2012).
[48] López-Estopier R, Camarillo-Avilés A, Bello-Jiménez M et al. Q-switched mode locking noise-like pulse generation from a thulium-doped all-fiber laser based on nonlinear polarization rotation[J]. Results in Optics, 5, 100115(2021).
[49] Wang M, Liu M Q, Chen Y W et al. Stable noise-like pulse generation in all-PM mode-locked Tm-doped fiber laser based on NOLM[J]. Chinese Optics Letters, 19, 091402(2021).
[50] Fried N M. Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 µm[J]. Lasers in Surgery and Medicine, 37, 53-58(2005).
[51] Fried N M. High-power laser vaporization of the canine prostate using a 110 W Thulium fiber laser at 1.91 μm[J]. Lasers in Surgery and Medicine, 36, 52-56(2005).
[52] Fried N M, Murray K E. High-power thulium fiber laser ablation of urinary tissues at 1.94 μm[J]. Journal of Endourology, 19, 25-31(2005).
[53] Blackmon R L, Irby P B, Fried N M. Thulium fiber laser lithotripsy using tapered fibers[J]. Lasers in Surgery and Medicine, 42, 45-50(2010).
[54] Blackmon R L, Fried N M, Irby P B. Enhanced thulium fiber laser lithotripsy using micro-pulse train modulation[J]. Journal of Biomedical Optics, 17, 028002(2012).
[55] Traxer O, Keller E X. Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium: YAG laser[J]. World Journal of Urology, 38, 1883-1894(2020).
[56] Corrales M, Traxer O. Initial clinical experience with the new thulium fiber laser: first 50 cases[J]. World Journal of Urology, 39, 3945-3950(2021).
[57] Taratkin M, Azilgareeva C, Korolev D et al. Prospective single-center study of SuperPulsed thulium fiber laser in retrograde intrarenal surgery: initial clinical data[J]. Urologia Internationalis, 106, 404-410(2022).
[58] Enikeev D, Grigoryan V, Fokin I et al. Endoscopic lithotripsy with a SuperPulsed thulium-fiber laser for ureteral stones: a single-center experience[J]. International Journal of Urology, 28, 261-265(2021).
[59] Lin Y, Liu M Q, Ouyang D Q et al. Exploration of thulium-doped fiber lasers in lithotripsy in vitro[J]. Chinese Journal of Lasers, 49, 0101015(2022).
[60] Rice P, Somani B K. A systematic review of thulium fiber laser: applications and advantages of laser technology in the field of urology[J]. Research and Reports in Urology, 13, 519-527(2021).
[61] Kronenberg P, Traxer O. The laser of the future: reality and expectations about the new thulium fiber laser-a systematic review[J]. Translational Andrology and Urology, 8, S398-S417(2019).
[62] Hardy L A, Kennedy J D, Wilson C R et al. Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones[J]. Journal of Biophotonics, 10, 1240-1249(2017).
[63] Hu W G, Li J X. Advances in laser techniques for stone treatment[J]. Journal of Clinical Surgery, 28, 183-185(2020).
[64] Liu M, Gao X F. Advances in fundamental research and clinical application of Thulium fiber laser lithotripsy[J]. Chinese Journal of Urology, 42, 75-78(2021).
[65] Schembri M, Sahu J, Aboumarzouk O et al. Thulium fiber laser: the new kid on the block[J]. Turkish Journal of Urology, 46, S1-S10(2020).
[66] Zhang H, Xiao L, Zou H et al. Application of SpyGlass direct visualization system in diagnosis and treatment of biliary diseases[J]. China Journal of Endoscopy, 25, 1-5(2019).
[67] Sun M, Wang H G, Wang M T et al. Application of SpyGlass DS choledochoscope in intrahepatic bile duct stones[J]. China Journal of Endoscopy, 27, 78-83(2021).
[68] Xu W, Miao L, Wang Z F et al. Application of SpyGlassTM DS direct visualization system in the diagnosis and treatment of biliary tract diseases[J]. Journal of Clinical Hepatology, 36, 2626-2629(2020).
[69] Zou Y Y, Guo Y D, Gu H X et al. Application of SpyGlass in biliary and pancreatic diseases[J]. Modern Digestion & Intervention, 25, 812-815(2020).
[70] Mizrahi M, Khoury T, Wang Y et al. “Apple Far from the Tree”: comparative effectiveness of fiberoptic single-operator cholangiopancreatoscopy (FSOCP) and digital SOCP (DSOCP)[J]. HPB, 20, 285-288(2018).
[71] Pal D, Paul A, Shekhar N K et al. COM stone dusting and soft tissue ablation with Q-switched thulium fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 7100808(2019).