[1] T Steinmetz, T Wilken, C Araujo-Hauck. Laser frequency combs for astronomical observations. Science, 321, 1335-1337(2008).
[2] Jiaxin Su, Cunzhu Tong, Lijie Wang. Beam waist shrinkage of high-power broad-area diode lasers by mode tailoring. Optics Express, 28, 13131-13140(2020).
[3] Z Bai, H Yuan, Z Liu. Stimulated Brillouin scattering materials, experimental design and applications: A review. Optical Materials, 75, 626-645(2018).
[4] Pavel C̆erný, Jelı́nková Helena, G Zverev Peter. Solid state lasers with Raman frequency conversion. Progress in Quantum Electronics, 28, 113-143(2004).
[5] 白振旭, Zhenxu Bai, 王雨雷, Yulei Wang, 吕志伟, Zhiwei Lv. Research progress of serial laser beam combination based on stimulated Brillouin amplification. Laser & Optoelectronics Progress, 52, 110004(2015).
[6] 何建国, Jianguo He, 李明, Ming Li, 貊泽强, Zeqiang Mo. Study on longitudinal forced convection heat transfer for high power slab media. Infrared and Laser Engineering, 49, 20200556(2020).
[7] R Weber, B Neuenschwander, H P Weber. Thermal effects in solid-state laser materials. Optical Materials, 11, 245-254(1999).
[8] S Chénais, F Druon, S Forget. On thermal effects in solid state lasers: The case of ytterbium-doped materials. Progress in Quantum Electronics, 30, 89-153(2006).
[9] M J Söderlund, J J M Ponsoda, J P Koplow. Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling. Optics Express, 17, 9940-9946(2009).
[10] D Y Shen, J K Sahu, W A Clarkson. Highly efficient in-band pumped Er: YAG laser with 60 W of output at 1645 nm. Optics Letters, 31, 754-756(2006).
[11] Hiromasa Ichikawa, Kohki Yamaguchi, Tomo Katsumata. High-power and highly efficient composite laser with an anti-reflection coated layer between a laser crystal and a diamond heat spreader fabricated by room-temperature bonding. Optics Express, 25, 22797-22804(2017).
[12] 王辉华, Huihua Wang, 林龙信, Longxin Lin, 叶辛, Xin Ye. Progress and tendency of high power slab lasers. Infrared and Laser Engineering, 49, 20190456(2020).
[13] C Jauregui, J Limpert, A Tünnermann. High-power fibre lasers. Nature photonics, 7, 861-867(2013).
[14] 王菲, Fei Wang. High stability 488 nm light generated by intra-cavity frequency doubling in optically pumped semiconductor disc lasers. Infrared and Laser Engineering, 48, 0606004(2019).
[15] D J Ripin, J R Ochoa, R L Aggarwal. 165-W cryogenically cooled Yb: YAG laser. Optics Letters, 29, 2154-2156(2004).
[16] J P M Feve, K E Shortoff, M J Bohn. High average power diamond Raman laser. Optics Express, 19, 913-922(2011).
[17] E C Cheung, J G Ho, G D Goodno. Diffractive-optics-based beam combination of a phase-locked fiber laser array. Optics Letters, 33, 354-356(2008).
[18] Pu Zhou, Zejin Liu, Xiaolin Wang. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application. IEEE Journal of Selected Topics In Quantum Electronics, 15, 248-256(2009).
[19] C Cui, Y Wang, Z Lu. Demonstration of 2.5 J, 10 Hz, nanosecond laser beam combination system based on non-collinear Brillouin amplification. Optics Express, 26, 32717-32727(2018).
[20] https:www.e6.comenproductsoptics.
[21] http:www.diamondmaterials.com.
[22] 王仕发, Shifa Wang, 李丹明, Danming Li, 肖玉华, Yuhua Xiao. Diamond radiation detector used for space radiation detection: a state-of-art review. Materials Reports A, 32, 1459-1468(2018).
[23] W A Bassett. Diamond anvil cell, 50th birthday. High Pressure Research, 29, 163-186(2009).
[24] Mildren R P, Rabeau J R. Optical Engineering of Diamond (MILDREN: DIAMOND OPTICS OBK) || Intrinsic Optical Properties of Diamond[M]. Germany, Wiley‐VCH Verlag GmbH & Co. KGaA, 2013.
[26] R J Williams, O Kitzler, Z Bai. High power diamond Raman lasers. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1602214(2018).
[27] Z Bai, R J Williams, O Kitzler. Diamond Brillouin laser in the visible. APL Photonics, 5, 031301(2020).
[28] A Mckay, O Kitzler, R P Mildren. Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser. Laser & Photonics Review, 8, L37-L41(2014).
[29] Tennant Smithson. On the nature of the diamond[J]. Philosophical Transactions of the Royal Society of London. 1979, 87: 123–127.
[30] Friel I, Geoghegan S L, Twitchen D J, et al. Development of high quality single crystal diamond f novel laser applications[C]In Optics Photonics f Counterterrism Crime Fighting VI Optical Materials in Defence Systems Technology, 2010, 7838: 783819.
[31] P M Martineau, M P Gaukroger, K B Guy. High crystalline quality single crystal chemical vapour deposition diamond. Journal of Physics: Condensed Matter, 21, 364205(2009).
[32] E Granados, D J Spence, R P Mildren. Deep ultraviolet diamond Raman laser. Optics Express, 19, 10857-10863(2011).
[33] R P Mildren, J E Butler, J R Rabeau. CVD-diamond external cavity Raman laser at 573 nm. Optics Express, 16, 18950-18955(2008).
[34] R P Mildren, A Sabella. Highly efficient diamond Raman laser. Optics Letters, 34, 2811-2813(2009).
[35] A Sabella, J A Piper, R P Mildren. 1240 nm diamond Raman laser operating near the quantum limit. Optics Letters, 35, 3874-3876(2010).
[36] A Sabella, J A Piper, R P Mildren. Efficient conversion of a 1.064 μm Nd: YAG laser to the eye-safe region using a diamond Raman laser. Optics Express, 19, 23554-23560(2011).
[37] M Jelínek, O Kitzler, H Jelínková. CVD‐diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd: YAP laser. Laser Physics Letters, 9, 35-38(2012).
[38] A Sabella, J A Piper, R P Mildren. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm. Optics Letters, 39, 4037-4040(2014).
[39] S Antipov, A Sabella, R J Williams. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2=15 beam. Optics Letters, 44, 2506-2509(2019).
[40] D J Spence, E Granados, R P Mildren. Mode-locked picosecond diamond Raman laser. Optics Letters, 35, 556-558(2010).
[41] M Murtagh, J Lin, R P Mildren. Efficient diamond Raman laser generating 65 fs pulses. Optics Express, 23, 15504-15513(2015).
[42] M Murtagh, J Lin, R P Mildren. Ti: sapphire-pumped diamond Raman laser with sub-100-fs pulse duration. Optics Letters, 39, 2975-2978(2014).
[43] O Lux, S Sarang, O Kitzler. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain. Optica, 3, 876-881(2016).
[44] X Yang, O Kitzler, D J Spence. Single-frequency 620 nm diamond laser at high power, stabilized via harmonic self-suppression and spatial-hole-burning-free gain. Optics Letters, 44, 839-842(2019).
[45] X Yang, O Kitzler, D J Spence. Diamond sodium guide star laser. Optics Letters, 45, 1898-1901(2020).
[46] S Sarang, O Kitzler, O Lux. Single-longitudinal-mode diamond laser stabilization using polarization-dependent Raman gain. OSA Continuum, 2, 1028-1038(2019).
[47] O Kitzler, J Lin, M P Helen. Single-longitudinal-mode ring diamond Raman laser. Optics Letters, 42, 1229-1232(2017).
[48] P Latawiec, V Venkataraman, M J Burek. On-chip diamond Raman laser. Optica, 2, 924-928(2015).
[49] S Reilly, V G Savitski, H Liu. Monolithic diamond Raman laser. Optics Letters, 40, 930-933(2015).
[50] A McKay, D J Spence, D W Coutts. Diamond‐based concept for combining beams at very high average powers. Laser & Photonics Reviews, 11, 1600130(2017).
[51] R J Williams, Z Bai, S Sarang. Diamond Brillouin lasers. arXiv preprint, arXiv, 1807.00240(2018).
[52] Bai Z, Williams R J, Kitzler O, et al. Observation of stimulated Brillouin scattering Brillouin frequency comb generation in diamond[C]CLEO: QELS_Fundamental Science, 2018, FF3E7.
[53] Kamo M, Matsumoto S, Sato Y, et al. Nobuo SetakaMethod f synthesizing diamond[P]. US4434188A.
[54] F P Bundy, H T Hall, H M Strong. Man-made diamonds. Nature, 176, 51-55(1955).
[55] T H Maiman. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960).
[56] Ng W K, Woodbury E J. Ruby laser operation in near IR[C]Proceedings of the Institute of Radio Engineers, 1962, 50: 2367.
[57] G Eckhardt, R W Hellwarth, F J McClung. Stimulated Raman scattering from organic liquids. Physical Review Letters, 9, 455-457(1962).
[58] R Y Chiao, C H Townes, B P Stoicheff. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Physical Review Letters, 12, 592-595(1964).
[59] M H Grimsditch, A K Ramdas. Brillouin scattering in diamond. Physical Review B, 11, 3139-3148(1975).
[60] A A Kaminskii, V G E Ralchenko, V I Konov. Observation of stimulated Raman scattering in CVD-diamond. Journal of Experimental and Theoretical Physics Letters, 80, 267-270(2004).
[61] D C Parrotta, A J Kemp, M D Dawson. Tunable continuous-wave diamond Raman laser. Optics Express, 19, 24165-24170(2011).
[62] Antipov Sergei, J. Williams Robert, Sabella Alexander. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power. Optics Express, 28, 15232-15239(2020).
[63] M Li, O Kitzler, D J Spence. Investigating single-longitudinal-mode operation of a continuous wave second Stokes diamond Raman ring laser. Optics Express, 28, 1738-1744(2020).
[64] R W Ditchburn. Diamond as an optical material for space optics. Optica Acta: International Journal of Optics, 29, 355-359(1982).
[65] C A Klein. Diamond windows for IR applications in adverse environments. Diamond and Related Materials, 2, 1024-1032(1993).
[66] 王伟华, Weihua Wang, 代冰, Bing Dai, 王杨, Yang Wang. Recent progress of diamond optical window-related components. Materials Science and Technology, 28, 42-57(2020).
[67] J P Goss, P R Briddon, M J Rayson. Vacancy-impurity complexes and limitations for implantation doping of diamond. Physical Review B, 72, 035214(2005).
[68] Friel I, Geoghegan S L, Twitchen D J, et al. Development of high quality single crystal diamond f novel laser applications[C]Optics Photonics f Counterterrism Crime Fighting VI Optical Materials in Defence Systems Technology VII, 2010, 7838: 783819.
[69] J A Piper, H M Pask. Crystalline raman lasers. IEEE Journal of Selected Topics in Quantum Electronics, 13, 692-704(2007).
[71] R J Williams, O Kitzler, A Mckay. Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping. Optics Letters, 39, 4152-4155(2014).
[72] R J Williams, D J Spence, O Lux. High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond. Optics Express, 25, 749-757(2017).
[73] Heinzig M, Walbaum T, Williams R J, et al. Highpower singlepass pumped diamond Raman laser[C]Conference on Lasers ElectroOptics Europe & European Quantum Electronics Conference (CLEOEuropeEQEC), 2017, CA_11_5.
[74] O Kitzler, A Mckay, R P Mildren. Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser. Optics Letters, 37, 2790-2792(2012).
[75] V G Savitski, I Friel, J E Hastie. Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers. IEEE Journal of Quantum Electronics, 48, 328-337(2012).
[76] R J Williams, J Nold, M Strecker. Efficient Raman frequency conversion of high-power fiber lasers in diamond. Laser & Photonics Reviews, 9, 405-411(2015).
[77] O Lux, S Sarang, R J Williams. Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection. Optics Express, 24, 27812-27820(2016).
[78] K I Martin, W A Clarkson, D C Hanna. Self-suppression of axial mode hopping by intracavity second-harmonic generation. Optics Letters, 22, 375-377(1997).
[79] W Lai, P Ma, W Liu. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber. Optics Express, 28, 20908-20919(2020).
[80] Z Bai, R J Williams, H Jasbeer. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion. Optics Letters, 43, 563-566(2018).
[81] Z Bai, R. J. Williams, Ondrej Kitzler. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement. Optics Express, 26, 19797-19803(2018).
[82] Bai Z, Zhao C, Qi Y, et al. Towards longwave infrared lasing by diamond Raman conversion[C]Conference on Lasers ElectroopticsPacific Rim, 2020, 12.