• Acta Optica Sinica
  • Vol. 43, Issue 16, 1623017 (2023)
Chengli Wang1,2, Jiachen Cai1,2, Liping Zhou1,2, Ailun Yi1..., Bingcheng Yang1,2, Yuanhao Qin1,2, Jiaxiang Zhang1,2,** and Xin Ou1,2,*|Show fewer author(s)
Author Affiliations
  • 1National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/AOS230960 Cite this Article Set citation alerts
    Chengli Wang, Jiachen Cai, Liping Zhou, Ailun Yi, Bingcheng Yang, Yuanhao Qin, Jiaxiang Zhang, Xin Ou. Progress of Silicon Carbide Integrated Photonics[J]. Acta Optica Sinica, 2023, 43(16): 1623017 Copy Citation Text show less
    References

    [1] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J]. Proceedings of the Institution of Electrical Engineers, 113, 1151-1158(1966).

    [2] Won R. Integrating silicon photonics[J]. Nature Photonics, 4, 498-499(2010).

    [3] Thomson D, Zilkie A, Bowers J E et al. Roadmap on silicon photonics[J]. Journal of Optics, 18, 073003(2016).

    [4] Pu M H, Ottaviano L, Semenova E et al. Efficient frequency comb generation in AlGaAs-on-insulator[J]. Optica, 3, 823-826(2016).

    [5] Yi X, Yang Q F, Yang K Y et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator[J]. Optica, 2, 1078-1085(2015).

    [6] Boes A, Chang L, Langrock C et al. Lithium niobate photonics: unlocking the electromagnetic spectrum[J]. Science, 379, eabj4396(2023).

    [7] Kogelnik H. Theory of optical waveguides[J]. Guided-Wave Optoelectronics, 7-88(1988).

    [8] Zhuang R, Hong J J, Liu A P et al. Coupling between waveguides in three-dimensional integrated optical chip[J]. Laser & Optoelectronics Progress, 58, 1923001(2021).

    [9] Liang H, Wei F, Sun Y G et al. A 1310 nm band narrow linewidth hybrid integrated external cavity semiconductor laser based on fiber Bragg gratings[J]. Chinese Journal of Lasers, 48, 2001002(2021).

    [10] Jalali B, Fathpour S. Silicon photonics[J]. Journal of Lightwave Technology, 24, 4600-4615(2006).

    [11] Doerr C, Chen L, Vermeulen D et al. Single-chip silicon photonics 100-Gb/s coherent transceiver[C], Th5C.1(2014).

    [12] Doerr C, Heanue J, Chen L et al. Silicon photonics coherent transceiver in a ball-grid array package[C], Th5D.5(2017).

    [13] Fathololoumi S, Hui D, Jadhav S et al. 1.6 Tbps silicon photonics integrated circuit and 800 gbps photonic engine for switch co-packaging demonstration[J]. Journal of Lightwave Technology, 39, 1155-1161(2021).

    [14] Liu J Q, Huang G H, Wang R N et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits[J]. Nature Communications, 12, 2236(2021).

    [15] Qiao L L, Wang M, Wu R B et al. Ultra-low loss lithium niobate photonics[J]. Acta Optica Sinica, 41, 0823012(2021).

    [16] Liu S J, Zheng Y L, Chen X F. Nonlinear frequency conversion in lithium niobate thin films[J]. Acta Optica Sinica, 41, 0823013(2021).

    [17] Liu Y, Deng Y, Wei H et al. Design of flat optical frequency comb based on lithium niobate optical waveguide[J]. Chinese Journal of Lasers, 48, 1301001(2021).

    [18] Foty D, Gildenblat G. CMOS scaling theory - why our “theory of everything” still works, and what that means for the future[C], 27-38(2005).

    [19] Lin Z X, Kang Z, Xu P P et al. Turnkey generation of Kerr soliton microcombs on thin-film lithium niobate on insulator microresonators powered by the photorefractive effect[J]. Optics Express, 29, 42932-42944(2021).

    [20] Kippenberg T J, Gaeta A L, Lipson M et al. Dissipative kerr solitons in optical microresonators[J]. Science, 361, eaan8083(2018).

    [21] Brasch V, Geiselmann M, Herr T et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation[J]. Science, 351, 357-360(2016).

    [22] Del’Haye P, Schliesser A, Arcizet O et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 450, 1214-1217(2007).

    [23] Vico Triviño N, Dharanipathy U, Carlin J F et al. Integrated photonics on silicon with wide bandgap GaN semiconductor[J]. Applied Physics Letters, 102, 081120(2013).

    [24] Sato H, Abe M, Shoji I et al. Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide[J]. Journal of the Optical Society of America B, 26, 1892-1896(2009).

    [25] Zhang J S, Zhang H J, Sun H. Controlling optical bistability through quantum coherence in tin-vacancy color centers in diamond[J]. Acta Optica Sinica, 40, 1219001(2020).

    [26] Castelletto S, Boretti A. Silicon carbide color centers for quantum applications[J]. Journal of Physics: Photonics, 2, 022001(2020).

    [27] Lohrmann A, Johnson B C, McCallum J C et al. A review on single photon sources in silicon carbide[J]. Reports on Progress in Physics, 80, 034502(2017).

    [28] Son N T, Anderson C P, Bourassa A et al. Developing silicon carbide for quantum spintronics[J]. Applied Physics Letters, 116, 190501(2020).

    [29] Yi A L, Wang C L, Zhou L P et al. Silicon carbide for integrated photonics[J]. Applied Physics Reviews, 9, 031302(2022).

    [30] Bracher D O, Zhang X Y, Hu E L. Selective Purcell enhancement of two closely linked zero-phonon transitions of a silicon carbide color center[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 4060-4065(2017).

    [31] Lu X Y, Lee J Y, Feng P X L et al. High Q silicon carbide microdisk resonator[J]. Applied Physics Letters, 104, 181103(2014).

    [32] Zheng Y, Pu M H, Yi A L et al. 4H-SiC microring resonators for nonlinear integrated photonics[J]. Optics Letters, 44, 5784-5787(2019).

    [33] Zheng Y, Yi A, Ye C et al. Efficient second-harmonic generation in silicon carbide nanowaveguides[C](2022).

    [34] Cardenas J, Yu M J, Okawachi Y et al. Optical nonlinearities in high-confinement silicon carbide waveguides[J]. Optics Letters, 40, 4138-4141(2015).

    [35] Fan T R, Moradinejad H, Wu X et al. High-Q integrated photonic microresonators on 3C-SiC-on-insulator (SiCOI) platform[J]. Optics Express, 26, 25814-25826(2018).

    [36] Fan T R, Wu X, Eftekhar A A et al. High-quality integrated microdisk resonators in the visible-to-near-infrared wavelength range on a 3C-silicon carbide-on-insulator platform[J]. Optics Letters, 45, 153-156(2019).

    [37] Yi A L, Zheng Y, Huang H et al. Wafer-scale 4H-silicon carbide-on-insulator (4H-SiCOI) platform for nonlinear integrated optical devices[J]. Optical Materials, 107, 109990(2020).

    [38] Song B S, Asano T, Jeon S et al. Ultrahigh-Q photonic crystal nanocavities based on 4H silicon carbide[J]. Optica, 6, 991-995(2019).

    [39] Wang C L, Fang Z W, Yi A L et al. High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics[J]. Light: Science & Applications, 10, 139(2021).

    [40] Guidry M A, Yang K Y, Lukin D M et al. Optical parametric oscillation in silicon carbide nanophotonics[J]. Optica, 7, 1139-1142(2020).

    [41] Cai L T, Li J W, Wang R X et al. Octave-spanning microcomb generation in 4H-silicon-carbide-on-insulator photonics platform[J]. Photonics Research, 10, 870-876(2022).

    [42] Lukin D M, Dory C, Guidry M A et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics[J]. Nature Photonics, 14, 330-334(2020).

    [43] Fan T, Moradinejad H, Wu X et al. High Q Integrated Photonic Microresonators on 3C SiC-on-Insulator Platform[C](2018).

    [44] Wu X, Fan T R, Eftekhar A A et al. High-Q microresonators integrated with microheaters on a 3C-SiC-on-insulator platform[J]. Optics Letters, 44, 4941-4944(2019).

    [45] Zheng Y, Pu M H, Yi A L et al. High-quality factor, high-confinement microring resonators in 4H-silicon carbide-on-insulator[J]. Optics Express, 27, 13053-13060(2019).

    [46] Lukin D, Dory C, Radulaski M et al. 4H-SiC-on-insulator platform for quantum photonics[C], SM2F.6(2019).

    [47] Vuckovic J. Connecting quantum systems through optimized photonics (Conference Presentation)[J]. Proceedings of SPIE, 11091, 1109104(2019).

    [48] Lukin D M, Guidry M A, Vučković J. Silicon carbide: from abrasives to quantum photonics[J]. Optics and Photonics News, 32, 34-41(2021).

    [49] Guidry M A, Lukin D M, Yang K Y et al. Quantum optics of soliton microcombs[J]. Nature Photonics, 16, 52-58(2022).

    [50] Crook A L, Anderson C P, Miao K C et al. Purcell enhancement of a single silicon carbide color center with coherent spin control[J]. Nano Letters, 20, 3427-3434(2020).

    [51] Wang C L, Shen C, Yi A L et al. Visible and near-infrared microdisk resonators on a 4H-silicon-carbide-on-insulator platform[J]. Optics Letters, 46, 2952-2955(2021).

    [52] Zhou L P, Wang C L, Yi A L et al. Photonic crystal nanobeam cavities based on 4H-silicon carbide on insulator[J]. Chinese Optics Letters, 20, 031302(2022).

    [53] Yamada S, Song B S, Asano T et al. Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths[J]. Applied Physics Letters, 99, 201102(2011).

    [54] Powell K, Li L W, Shams-Ansari A et al. Integrated silicon carbide electro-optic modulator[J]. Nature Communications, 13, 1851(2022).

    [55] Fan T R, Wu X, Vangapandu S R M et al. Racetrack microresonator based electro-optic phase shifters on a 3C silicon-carbide-on-insulator platform[J]. Optics Letters, 46, 2135-2158(2021).

    [56] Wang R X, Li J W, Cai L T et al. Investigation of the electro-optic effect in high-Q 4H-SiC microresonators[J]. Optics Letters, 48, 1482-1485(2023).

    [57] Wang C L, Yi A L, Zheng P C et al. High yield preparation of flexible single-crystalline 4H-silicon carbide nanomembranes via buried micro-trenches[J]. Optical Materials, 115, 111068(2021).

    [58] Melzak J M. Silicon carbide for RF MEMS[C], 1629-1632(2003).

    [59] Picqué N, Hänsch T W. Frequency comb spectroscopy[J]. Nature Photonics, 13, 146-157(2019).

    [60] Trabesinger A. Nobel Prize 2005: Glauber, Hall and Hänsch[J]. Nature Physics, 1, 930-930(2005).

    [61] Chang L, Liu S T, Bowers J E. Integrated optical frequency comb technologies[J]. Nature Photonics, 16, 95-108(2022).

    [62] Papp S B, Beha K, Del’Haye P et al. Microresonator frequency comb optical clock[J]. Optica, 1, 10-14(2014).

    [63] Gao J P, Zhao M M, Lu J et al. Wide optical frequency comb system based on single intensity modulator[J]. Laser & Optoelectronics Progress, 58, 0913001(2021).

    [64] Wang C L, Li J, Yi A L et al. Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform[J]. Light: Science & Applications, 11, 341(2022).

    [65] Wang C L, Li J, Yi A L et al. Soliton microcombs in silicon-carbide microresonators[C](2022).

    [66] Jung H, Stoll R, Guo X et al. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator[J]. Optica, 1, 396-399(2014).

    [67] Liu X W, Sun C Z, Xiong B et al. Generation of multiple near-visible comb lines in an AlN microring via χ(2) and χ(3) optical nonlinearities[J]. Applied Physics Letters, 113, 171106(2018).

    [68] Castelletto S. Silicon carbide single-photon sources: challenges and prospects[J]. Materials for Quantum Technology, 1, 023001(2021).

    [69] Wang J W, Sciarrino F, Laing A et al. Integrated photonic quantum technologies[J]. Nature Photonics, 14, 273-284(2020).

    [70] Castelletto S, Johnson B C, Ivády V et al. A silicon carbide room-temperature single-photon source[J]. Nature Materials, 13, 151-156(2014).

    [71] Koehl W F, Buckley B B, Heremans F J et al. Room temperature coherent control of defect spin qubits in silicon carbide[J]. Nature, 479, 84-87(2011).

    [72] Feynman R P, Zee A[M]. QED: the strange theory of light and matter(2006).

    [73] Jacob Z, Smolyaninov I I, Narimanov E E. Broadband Purcell effect: radiative decay engineering with metamaterials[J]. Applied Physics Letters, 100, 181105(2012).

    [74] Babin C, Stöhr R, Morioka N et al. Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence[J]. Nature Materials, 21, 67-73(2022).

    [75] Chen Y C, Salter P S, Niethammer M et al. Laser writing of scalable single color centers in silicon carbide[J]. Nano Letters, 19, 2377-2383(2019).

    [76] Day A M, Dietz J R, Sutula M et al. Laser writing of spin defects in nanophotonic cavities[J]. Nature Materials, 22, 696-702(2023).

    [77] Lukin D M, Guidry M A, Vučković J. Integrated quantum photonics with silicon carbide: challenges and prospects[J]. PRX Quantum, 1, 020102(2020).

    Chengli Wang, Jiachen Cai, Liping Zhou, Ailun Yi, Bingcheng Yang, Yuanhao Qin, Jiaxiang Zhang, Xin Ou. Progress of Silicon Carbide Integrated Photonics[J]. Acta Optica Sinica, 2023, 43(16): 1623017
    Download Citation