[1] G BODEGA, M ALIQUE, L PUEBLA et al. Microvesicles: ROS scavengers and ROS producers. Journal of Extracellular Vesicles, 1626654-10(2019).
[2] Z CAO, D LI, J WANG et al. Reactive oxygen species-sensitive polymeric nanocarriers for synergistic cancer therapy. Acta Biomaterialia(2021).
[3] Y HE, LIU S HUA, J YIN et al. Sonodynamic and chemodynamic therapy based on organic/organometallic sensitizers. Coordination Chemistry Reviews(2021).
[4] B YANG, Y CHEN, J SHI. Reactive oxygen species (ROS)-based nanomedicine. Chemical Reviews, 4881-4985(2019).
[5] N YUMITA, R NISHIGAKI, K UMEMURA et al. Hematoporphy- rin as a sensitizer of cell-damaging effect of ultrasound. Japanese Journal of Cancer Research, 219-222(1989).
[6] R LIU, Q ZHANG, Y LANG et al. Sonodynamic therapy, a treatment developing from photodynamic therapy. Photodiagnosis and Photodynamic Therapy(2017).
[7] H WANG, X PAN, X WANG et al. Degradable carbon-silica nano-composite with immunoadjuvant property for dual-modality photother-mal/photodynamic therapy. ACS Nano, 2847-2859(2020).
[8] S YAO, X ZHAO, X WAN et al. π-π conjugation promoted nano-catalysis for cancer therapy based on a covalent organic framework. Materials Horizons, 3457-3467(2021).
[9] V G DEEPAGAN, D G YOU, W UM et al. Long-circulating Au- TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Letters, 6257-6264(2016).
[10] F GONG, L CHENG, N YANG et al. Ultrasmall oxygen-deficient bimetallic oxide MnWOx nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. Advanced Materials, 1900730-9(2019).
[11] X ZHONG, X WANG, L CHENG et al. GSH-depleted PtCu3 nanocages for chemodynamic-enhanced sonodynamic cancer therapy. Advanced Functional Materials, 1907954-12(2020).
[12] H ZHANG, X PAN, Q WU et al. Manganese carbonate nanoparti-cles-mediated mitochondrial dysfunction for enhanced sonodynamic therapy. Exploration, 20210010-12(2021).
[13] L ZHU, Z L WANG. Recent progress in piezo-phototronic effect enhanced solar cells. Advanced Functional Materials, 1808214-18(2019).
[14] M T CHORSI, E J CURRY, H T CHORSI et al. Piezoelectric biomaterials for sensors and actuators. Advanced Materials, 1802084-15(2019).
[15] Q XU, X GAO, S ZHAO et al. Construction of bio-piezoelectric platforms: from structures and synthesis to applications. Advanced Materials, 2008452-28(2021).
[16] W WANG, M XU, X XU et al. Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting. Angewandte Chemie International Edition, 136-152(2020).
[17] X YU, S WANG, X ZHANG et al. Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing. Nano Energy(2018).
[18] S MANNA, K R TALLEY, P GORAI et al. Enhanced piezoelectric response of AlN via CrN alloying. Physical Review Applied, 34026-15(2018).
[19] Z L WANG. Progress in piezotronics and piezo-phototronics. Advanced Materials, 4632-4646(2012).
[20] R K PANDEY, J DUTTA, S BRAHMA et al. Review on ZnO- based piezotronics and piezoelectric nanogenerators: aspects of pie-zopotential and screening effect. Journal of Physics: Materials(2021).
[21] M B GHASEMIAN, T DAENEKE, Z SHAHRBABAKI et al. Peculiar piezoelectricity of atomically thin planar structures. Nanoscale, 2875-2901(2020).
[22] R HINCHET, U KHAN, C FALCONI et al. Piezoelectric properties in two-dimensional materials: simulations and experiments. Materials Today, 611-630(2018).
[23] J M WU. Piezo-catalytic effect on the enhancement of the ultra- high degradation activity in the dark by single- and few-layers MoS2 nanoflowers. Advanced Matericals, 3718-3725(2016).
[24] Z L WANG, M WILLATZEN. Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures. Nano Energy(2019).
[25] W UM, K P K E, J LEE et al. Recent advances in nanomaterial- based augmented sonodynamic therapy of cancer. Chemical Communications, 2854-2866(2021).
[26] H XU, K S SUSLICK. Molecular emission and temperature meas- urements from single-bubble sonoluminescence. Physical Review Letters, 244301-4(2010).
[27] Y T DIDENKO, K S SUSLICK. The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature, 394-397(2002).
[28] Y NOSAKA, A Y NOSAKA. Generation and detection of reactive oxygen species in photocatalysis. Chemical Reviews, 11302-11336(2017).
[29] Y LI, J XIE, W UM et al. Sono/photodynamic nanomedicine-elicited cancer immunotherapy. Advanced Functional Materials, 2008061-25(2021).
[30] J CURIE, P CURIE. Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de la Société Chimique de France(1880).
[31] J WU, W MAO, Z WU et al. Strong pyro-catalysis of pyroelectric BiFeO3 nanoparticles under a room-temperature cold-hot alternation. Nanoscale, 7343-7350(2016).
[32] Y WANG, X WEN, Y JIA et al. Piezo-catalysis for nondestructive tooth whitening. Nature Communications, 1328-11(2020).
[33] Z L WANG. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today, 540-552(2010).
[34] L PAN, S SUN, Y CHEN et al. Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Advanced Energy Materials, 2000214-25(2020).
[35] Y KANG, L LEI, C ZHU et al. Piezo-photocatalytic effect mediat- ing reactive oxygen species burst for cancer catalytic therapy. Materials Horizons, 2273-2285(2021).
[36] L ZHU, Z L WANG. Progress in piezotronics and piezo-phototronics of quantum materials. Journal of Physics D: Applied Physics, 343001-25(2019).
[37] Z ZHOU, S YUAN, J WANG. Theoretical progress on direct z-scheme photocatalysis of two-dimensional heterostructures. Frontiers of Physics, 1-9(2021).
[38] P ZHOU, J YU, M JARONIEC. All-solid-state z-scheme photocata- lytic systems. Advanced Materials, 4920-4935(2014).
[39] Z LI, T ZHANG, F FAN et al. Piezoelectric materials as sono- dynamic sensitizers to safely ablate tumors: a case study using black phosphorus. Journal of Physical Chemistry Letters, 1228-1238(2020).
[40] P ZHU, Y CHEN, J SHI. Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Advanced Materials, 2001976-8(2020).
[41] Y DONG, S DONG, B LIU et al. 2D piezoelectric Bi2MoO6nano- ribbons for GSH-enhanced sonodynamic therapy. Advanced Materials, 2106838-11(2021).
[42] J OUYANG, L DENG, W CHEN et al. Two dimensional semicon- ductors for ultrasound-mediated cancer therapy: the case of black phos-phorus nanosheets. Chemical Communications, 2874-2877(2018).
[43] Y LIU, Y WANG, W ZHEN et al. Defect modified zinc oxide with augmenting sonodynamic reactive oxygen species generation. Biomaterials(2020).
[44] S MASIMUKKU, Y C HU, Z H LIN et al. High efficient degradation of dye molecules by PDMS embedded abundant singlelayer tungsten disulfide and their antibacterial performance. Nano Energy(2018).
[45] X FENG, L MA, J LEI et al. Piezo-augmented sonosensitizer with strong ultrasound-propelling ability for efficient treatment of osteomye-litis. ACS Nano, 2546-2557(2022).
[46] M WU, Z ZHANG, Z LIU et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today(2021).