• Advanced Photonics Nexus
  • Vol. 3, Issue 4, 046008 (2024)
Yanwei Cui1, Jianguo Zhang1,*, Zhongquan Nie2,*, Anbang Wang3,4,*, and Yuncai Wang3,4
Author Affiliations
  • 1Taiyuan University of Technology, Ministry of Education, College of Electronic Information and Optical Engineering, Key Laboratory of Advanced Transducers and Intelligent Control System, Taiyuan, China
  • 2National University of Defense Technology, College of Advanced Interdisciplinary Studies, Changsha, China
  • 3Guangdong University of Technology, School of Information Engineering, Guangzhou, China
  • 4Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangzhou, China
  • show less
    DOI: 10.1117/1.APN.3.4.046008 Cite this Article Set citation alerts
    Yanwei Cui, Jianguo Zhang, Zhongquan Nie, Anbang Wang, Yuncai Wang, "Achieving high-security and massive-capacity optical communications based on orbital angular momentum configured chaotic laser," Adv. Photon. Nexus 3, 046008 (2024) Copy Citation Text show less
    References

    [1] M. Sciamanna, K. A. Shore. Physics and applications of laser diode chaos. Nat. Photonics, 9, 151-162(2015).

    [2] A. Argyris et al. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 438, 343-346(2005).

    [3] E. Klein et al. Public-channel cryptography using chaos synchronization. Phys. Rev. E, 72, 016214(2005).

    [4] M. Zhang et al. Generation of broadband chaotic laser using dual-wavelength optically injected Fabry–Pérot laser diode with optical feedback. IEEE Photonics Technol. Lett., 23, 1872-1874(2011).

    [5] L. Qiao et al. Generation of flat wideband chaos based on mutual injection of semiconductor lasers. Opt. Lett., 44, 5394-5397(2019).

    [6] R. Lavrov, M. Jacquot, L. Larger. Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications. IEEE J. Quantum Electron., 46, 1430-1435(2010).

    [7] Q. Yang et al. Generation of a broadband chaotic laser by active optical feedback loop combined with a high nonlinear fiber. Opt. Lett., 45, 1750-1753(2020).

    [8] P. Li et al. Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter. Opt. Express, 27, 17859-17867(2019).

    [9] N. Jiang et al. Physical secure optical communication based on private chaotic spectral phase encryption/decryption. Opt. Lett., 44, 1536-1539(2019).

    [10] N. Li et al. Enhanced two-channel optical chaotic communication using isochronous synchronization. IEEE J. Sel. Top. Quantum Electron., 19, 0600109(2012).

    [11] M. Cheng et al. Security-enhanced OFDM-PON using hybrid chaotic system. IEEE Photonics Technol. Lett., 27, 326-329(2014).

    [12] X. Dou et al. Experimental demonstration of polarization-division multiplexing of chaotic laser secure communications. Appl. Opt., 54, 4509-4513(2015).

    [13] J. Ke et al. Chaotic optical communications over 100-km fiber transmission at 30-gb/s bit rate. Opt. Lett., 43, 1323-1326(2018).

    [14] A. Zhao et al. Physical layer encryption for WDM optical communication systems using private chaotic phase scrambling. J. Lightwave Technol., 39, 2288-2295(2021).

    [15] Y. Fu et al. High-speed optical secure communication with an external noise source and an internal time-delayed feedback loop. Photonics Res., 7, 1306-1313(2019).

    [16] J. Ai, L. Wang, J. Wang. Secure communications of CAP-4 and OOK signals over MMF based on electro-optic chaos. Opt. Lett., 42, 3662-3665(2017).

    [17] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [18] H. Huang et al. 100 tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt. Lett., 39, 197-200(2014).

    [19] J. Wang et al. N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes, 1-3(2014).

    [20] Y. Ren et al. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m. Opt. Lett., 41, 622-625(2016).

    [21] K. Zou et al. High-capacity free-space optical communications using wavelength-and mode-division-multiplexing in the mid-infrared region. Nat. Commun., 13, 7662(2022).

    [22] K. Zhang et al. A review of orbital angular momentum vortex beams generation: from traditional methods to metasurfaces. Appl. Sci., 10, 1015(2020).

    [23] B. Dutta et al. Numerical evaluation of bidirectional high-speed data transmission over turbulence tolerable FSO link employing WDM-OAM multiplexing and DP-QPSK modulation techniques. Opt. Commun., 546, 129753(2023).

    [24] B. Dutta et al. 100 Gbps data transmission based on different l-valued OAM beam multiplexing employing WDM techniques and free space optics. Opt. Quantum Electron., 53, 515(2021).

    [25] B. Dutta et al. 640 Gbps FSO data transmission system based on orbital angular momentum beam multiplexing employing optical frequency comb. Opt. Quantum Electron., 54, 132(2022).

    [26] K. Dholakia, T. Čižmár. Shaping the future of manipulation. Nat. Photonics, 5, 335-342(2011).

    [27] M. P. MacDonald et al. Creation and manipulation of three-dimensional optically trapped structures. Science, 296, 1101-1103(2002).

    [28] L. Paterson et al. Controlled rotation of optically trapped microscopic particles. Science, 292, 912-914(2001).

    [29] S. Lin et al. All-optical vectorial control of multistate magnetization through anisotropy-mediated spin-orbit coupling. Nanophotonics, 8, 2177-2188(2019).

    [30] Y. Zhang et al. Ultrafast multi-target control of tightly focused light fields. Opto-Electron. Adv., 5, 210026(2022).

    [31] Y. Zhang et al. Dual-point noncoaxial rotational Doppler effect towards synthetic OAM light fields for real-time rotating axis detection. Light: Adv. Manuf., 4, 1-11(2023).

    [32] S. Bernet et al. Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt. Express, 14, 3792-3805(2006).

    [33] Z.-Q. Nie et al. Three-dimensional super-resolution longitudinal magnetization spot arrays. Light Sci. Appl., 6, e17032(2017).

    [34] R. Lang, K. Kobayashi. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron., 16, 347-355(1980).

    [35] A. Wang, Y. Wang, J. Wang. Route to broadband chaos in a chaotic laser diode subject to optical injection. Opt. Lett., 34, 1144-1146(2009).

    [36] T. Yamamoto et al. Common-chaotic-signal induced synchronization in semiconductor lasers. Opt. Express, 15, 3974-3980(2007).

    [37] L. Wang et al. Scheme of coherent optical chaos communication. Opt. Lett., 45, 4762-4765(2020).

    [38] J. Liu, J. Zhang, Y. Wang. Secure communication via chaotic synchronization based on reservoir computing. IEEE Trans. Neural Networks Learn. Syst., 35, 285-299(2022).

    [39] M. Zhang, Y. Wang. Review on chaotic lasers and measurement applications. J. Lightwave Technol., 39, 3711-3723(2021).

    [40] A. Sawant et al. Ultimate capacity analysis of orbital angular momentum channels. IEEE Wireless Commun., 28, 90-96(2020).

    [41] R. L. Phillips, L. C. Andrews. Spot size and divergence for Laguerre Gaussian beams of any order. Appl. Opt., 22, 643-644(1983).

    [42] P. Vaveliuk, B. Ruiz, A. Lencina. Limits of the paraxial approximation in laser beams. Opt. Lett., 32, 927-929(2007).

    [43] G. Molina-Terriza, J. P. Torres, L. Torner. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett., 88, 013601(2001).

    [44] Y.-D. Liu et al. Orbital angular momentum (OAM) spectrum correction in free space optical communication. Opt. Express, 16, 7091-7101(2008).

    [45] G. Xie et al. Performance metrics and design considerations for a free-space optical orbital-angular-momentum–multiplexed communication link. Optica, 2, 357-365(2015).

    [46] M. Vasnetsov, V. Pas’ Ko, M. Soskin. Analysis of orbital angular momentum of a misaligned optical beam. New J. Phys., 7, 46(2005).

    [47] J. Cao et al. Mitigating the cross talk of orbital angular momentum modes in free-space optical communication by using an annular vortex beam and a focusing mirror. Front. Phys., 10(2022).

    [48] X. Li et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat. Commun., 3, 998(2012).

    [49] L. Li et al. Orbital-angular-momentum-multiplexed free-space optical communication link using transmitter lenses. Appl. Opt., 55, 2098-2103(2016).

    [50] Y. Ren et al. Adaptive-optics-based simultaneous pre-and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link. Optica, 1, 376-382(2014).

    [51] G. Xie et al. Localization from the unique intensity gradient of an orbital-angular-momentum beam. Opt. Lett., 42, 395-398(2017).

    [52] L. Wang et al. Chaos synchronization of semiconductor lasers over 1040-km fiber relay transmission with hybrid amplification. Photonics Res., 11, 953-960(2023).

    [53] H. Gao et al. 0.75 Gbit/s high-speed classical key distribution with mode-shift keying chaos synchronization of Fabry–Perot lasers. Light Sci. Appl., 10, 172(2021).

    [54] X. Wang et al. Recent advances on optical vortex generation. Nanophotonics, 7, 1533-1556(2018).

    [55] Z. Wang et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600-612(2004).

    [56] J. Xu. Degrees of freedom of OAM-based line-of-sight radio systems. IEEE Trans. Antennas Propag., 65, 1996-2008(2017).

    [57] X. Sun, I. B. Djordjevic. Physical-layer security in orbital angular momentum multiplexing free-space optical communications. IEEE Photonics J., 8, 7901110(2016).

    [58] S. Franke-Arnold et al. Uncertainty principle for angular position and angular momentum. New J. Phys., 6, 103(2004).

    [59] M. Bloch et al. Wireless information-theoretic security. IEEE Trans. Inf. Theory, 54, 2515-2534(2008).

    Yanwei Cui, Jianguo Zhang, Zhongquan Nie, Anbang Wang, Yuncai Wang, "Achieving high-security and massive-capacity optical communications based on orbital angular momentum configured chaotic laser," Adv. Photon. Nexus 3, 046008 (2024)
    Download Citation