• Laser & Optoelectronics Progress
  • Vol. 59, Issue 14, 1415005 (2022)
Xiaozhong Wang1,*, Rui Yu1, Wei Guo1, Xueyuan Huang1..., Wenchen Li2 and Cheng Wang3|Show fewer author(s)
Author Affiliations
  • 1School of Electronics Science and Engineering, Xiamen University, Xiamen 361005, Fujian , China
  • 2College of Information Engineering, Xijing University, Xi’an , 710123, Shaanxi , China
  • 3College of Informatics, Xiamen University, Xiamen 361005, Fujian , China
  • show less
    DOI: 10.3788/LOP202259.1415005 Cite this Article Set citation alerts
    Xiaozhong Wang, Rui Yu, Wei Guo, Xueyuan Huang, Wenchen Li, Cheng Wang. Research Progress in Microvibration Detection Technology Based on Laser Speckles[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415005 Copy Citation Text show less
    References

    [1] Meng G, Dong Y H, Zhou X B et al. Research on micro-vibration control and testing of FY-4 meteorological satellite[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 49, 74-84(2019).

    [2] Henriquez P, Alonso J B, Ferrer M A et al. Review of automatic fault diagnosis systems using audio and vibration signals[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44, 642-652(2014).

    [3] Zhao R, Hong Z W, Lu J et al. A new method of out-of-plane displacement measurement for optical fiber material based on digital speckle correlation method[J]. Acta Optica Sinica, 41, 1712002(2021).

    [4] Avci O, Abdeljaber O, Kiranyaz S et al. A review of vibration-based damage detection in civil structures: from traditional methods to machine learning and deep learning applications[J]. Mechanical Systems and Signal Processing, 147, 107077(2021).

    [5] Lu T Z, Li N, Huang X L et al. Underwater acoustic signal measurement based on amplitude-modulated laser interference technology[J]. Laser & Optoelectronics Progress, 58, 0912006(2021).

    [6] Meng Z, Chen W, Wang J F et al. Recent progress in fiber-optic hydrophones[J]. Photonic Sensors, 11, 109-122(2021).

    [7] Chan A, Mongeau L, Kost K. Vocal fold vibration measurements using laser Doppler vibrometry[J]. The Journal of the Acoustical Society of America, 133, 1667-1676(2013).

    [8] Scalise L, Yu Y G, Giuliani G et al. Self-mixing laser diode velocimetry: application to vibration and velocity measurement[J]. IEEE Transactions on Instrumentation and Measurement, 53, 223-232(2004).

    [9] Xu Z, Li J Y, Zhang S L et al. Remote eavesdropping at 200 meters distance based on laser feedback interferometry with single-photon sensitivity[J]. Optics and Lasers in Engineering, 141, 106562(2021).

    [10] Zhao Y Y, Zhu D S, Tu Y R et al. Coherent laser detection of the femtowatt-level frequency-shifted optical feedback based on a DFB fiber laser[J]. Optics Letters, 46, 1229-1232(2021).

    [11] Zalevsky Z, Beiderman Y, Margalit I et al. Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern[J]. Optics Express, 17, 21566-21580(2009).

    [12] Ozana N, Margalith I, Beiderman Y et al. Demonstration of a remote optical measurement configuration that correlates with breathing, heart rate, pulse pressure, blood coagulation, and blood oxygenation[J]. Proceedings of the IEEE, 103, 248-262(2015).

    [13] Chen Z Y, Wang C, Huang C H et al. Audio signal reconstruction based on adaptively selected seed points from laser speckle images[J]. Optics Communications, 331, 6-13(2014).

    [14] Gubarev F, Li L, Klenovskii M et al. Speckle pattern processing by digital image correlation[J]. MATEC Web of Conferences, 48, 04003(2016).

    [15] Wu N, Haruyama S. Real-time audio detection and regeneration of moving sound source based on optical flow algorithm of laser speckle images[J]. Optics Express, 28, 4475-4488(2020).

    [16] Wang Y, Gao Y, Liu Y et al. Optimal aperture and digital speckle optimization in digital image correlation[J]. Experimental Mechanics, 61, 677-684(2021).

    [17] Davis A, Rubinstein M, Wadhwa N et al. The visual microphone: passive recovery of sound from video[J]. ACM Transactions on Graphics, 33, 7901-7910(2014).

    [18] Mathematics in Industry Reports. Measuring vibrations from video feeds[EB/OL]. https://www.cambridge.org/engage/miir/article-details/60a6b2b8b15239b2dc63a3a7

    [19] Wang Z Y, Nguyen H, Quisberth J. Audio extraction from silent high-speed video using an optical technique[J]. Optical Engineering, 53, 110502(2014).

    [20] Zhang D S, Guo J, Lei X J et al. Note: sound recovery from video using SVD-based information extraction[J]. The Review of Scientific Instruments, 87, 086111(2016).

    [21] Zhang D S, Guo J, Jin Y et al. Efficient subtle motion detection from high-speed video for sound recovery and vibration analysis using singular value decomposition-based approach[J]. Optical Engineering, 56, 094105(2017).

    [22] Veber A A, Lyashedko A, Sholokhov E et al. Laser vibrometry based on analysis of the speckle pattern from a remote object[J]. Applied Physics B, 105, 613-617(2011).

    [23] Bianchi S. Vibration detection by observation of speckle patterns[J]. Applied Optics, 53, 931-936(2014).

    [24] Bianchi S, Giacomozzi E. Long-range detection of acoustic vibrations by speckle tracking[J]. Applied Optics, 58, 7805-7809(2019).

    [25] Dai C, Liu C, Wu Y F et al. Audio signal detection and enhancement based on linear CMOS array and multi-channel data fusion[J]. IEEE Access, 8, 133463-133469(2020).

    [26] Wu N, Haruyama S. The 20 k samples-per-second real time detection of acoustic vibration based on displacement estimation of one-dimensional laser speckle images[J]. Sensors, 21, 2938(2021).

    [27] Huang X Y, Guo W, Yu R et al. Real-time high sensibility vibration detection based on phase correlation of line speckle patterns[J]. Optics & Laser Technology, 148, 107759(2022).

    [28] Tong X H, Ye Z, Xu Y S et al. Image registration with Fourier-based image correlation: a comprehensive review of developments and applications[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 4062-4081(2019).

    [29] Loizou P C[M]. Speech enhancement: theory and practice(2013).

    [30] Boldt J B, Ellis D P W. A simple correlation-based model of intelligibility for nonlinear speech enhancement and separation[C], 1849-1853(2009).

    [31] Liu C, Li L, Huang X Y et al. Audio signal extraction and enhancement based on CNN from laser speckles[J]. IEEE Photonics Journal, 14, 6807205(2021).

    [32] Huang J, Sun C R, Lin X L. Displacement field measurement of speckle images using convolutional neural network[J]. Acta Optica Sinica, 41, 2012002(2021).

    [33] Ait-Aider O, Bartoli A, Andreff N. Kinematics from lines in a single rolling shutter image[C], 9737997(2007).

    [34] Sun W. Research on speed measurement of rolling shutter digital camera[D](2010).

    [35] Basler Vision Technology. User’s manual for GigE cameras[EB/OL]. https://partner.cognex.com/FileLibrary/1e78a000947d4bdda5ed27def0ee3394/ace%20GigE%20Users%20Manual.pdf

    [36] Simoncelli E P, Freeman W T, Adelson E H et al. Shiftable multiscale transforms[J]. IEEE Transactions on Information Theory, 38, 587-607(1992).

    [37] Gautama T, van Hulle M A. A phase-based approach to the estimation of the optical flow field using spatial filtering[J]. IEEE Transactions on Neural Networks, 13, 1127-1136(2002).

    [38] Loizou P C. Speech enhancement based on perceptually motivated Bayesian estimators of the magnitude spectrum[J]. IEEE Transactions on Speech and Audio Processing, 13, 857-869(2005).

    [39] Zhou M. Vibration extraction using rolling shutter cameras[D](2016).

    [40] Zhao Y P, Liu J Y, Guo S J et al. Measuring frequency of one-dimensional vibration with video camera using electronic rolling shutter[J]. Optical Engineering, 57, 043104(2018).

    [41] Hiroki S, Koichi T, Kenta I et al. Noise-reducing sound capture based on exposure-time of still camera[C](2019).

    [42] Zhu G, Yao X R, Sun Z B et al. A high-speed imaging method based on compressive sensing for sound extraction using a low-speed camera[J]. Sensors, 18, 1524(2018).

    [43] Barcellona C, Halpaap D, Amil P et al. Remote recovery of audio signals from videos of optical speckle patterns: a comparative study of signal recovery algorithms[J]. Optics Express, 28, 8716-8723(2020).

    [44] Chu L, Liu B, Xu L et al. Speckle quality evaluation based on gray level co-occurrence matrix[J]. Laser & Optoelectronics Progress, 58, 0410019(2021).

    [45] Davis A, Bouman K L, Chen J G et al. Visual vibrometry: estimating material properties from small motions in video[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 732-745(2017).

    Xiaozhong Wang, Rui Yu, Wei Guo, Xueyuan Huang, Wenchen Li, Cheng Wang. Research Progress in Microvibration Detection Technology Based on Laser Speckles[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415005
    Download Citation