[1] Coons A H. Fluorescent antibody methods[J]. General Cytochemical Methods, 1, 399-422(1958).
[2] Coons A H, Creech H J, Jones R N et al. The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody[J]. The Journal of Immunology, 45, 159-170(1942).
[3] Kelen A E, Ayllon-Leindl L, Labzoffsky N A. Indirect fluorescent antibody method in serodiagnosis of toxoplasmosis[J]. Canadian Journal of Microbiology, 8, 545-554(1962).
[4] Sigal Y M, Zhou R B, Zhuang X W. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 361, 880-887(2018).
[5] Schermelleh L, Ferrand A, Huser T et al. Super-resolution microscopy demystified[J]. Nature Cell Biology, 21, 72-84(2019).
[6] Liu S, Hoess P, Ries J. Super-resolution microscopy for structural cell biology[J]. Annual Review of Biophysics, 51, 301-326(2022).
[7] Bond C, Santiago-Ruiz A N, Tang Q et al. Technological advances in super-resolution microscopy to study cellular processes[J]. Molecular Cell, 82, 315-332(2022).
[8] Sun Y L, Zhu H F, Yin L et al. Fluorescence interference structured illumination microscopy for 3D morphology imaging with high axial resolution[J]. Advanced Photonics, 5, 056007(2023).
[9] Liu S, Huh H, Lee S H et al. Three-dimensional single-molecule localization microscopy in whole-cell and tissue specimens[J]. Annual Review of Biomedical Engineering, 22, 155-184(2020).
[10] Lelek M, Gyparaki M T, Beliu G et al. Single-molecule localization microscopy[J]. Nature Reviews: Methods Primers, 1, 39(2021).
[11] Yang J Y, Dong H, Xing F L et al. Single-molecule localization super-resolution microscopy and its applications[J]. Laser & Optoelectronics Progress, 58, 1200001(2021).
[12] Hou M D, Hu F, Yang J Y et al. Screening and reconstruction for single molecular localization super-resolution images of nuclear pore complexes[J]. Chinese Journal of Lasers, 51, 0307101(2024).
[13] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).
[14] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).
[15] Sharonov A, Hochstrasser R M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes[J]. Proceedings of the National Academy of Science, 103, 18911-18916(2006).
[16] Pan L T, Hu F, Zhang X Z et al. Multicolor single-molecule localization super-resolution microscopy[J]. Acta Optica Sinica, 37, 0318010(2017).
[17] Xu K, Zhong G S, Zhuang X W. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons[J]. Science, 339, 452-456(2013).
[18] Lopes F B, Bálint Š, Valvo S et al. Membrane nanoclusters of FcγRI segregate from inhibitory SIRPα upon activation of human macrophages[J]. The Journal of Cell Biology, 216, 1123-1141(2017).
[19] Hu F, Zhu D L, Dong H et al. Super-resolution microscopy reveals nanoscale architecture and regulation of podosome clusters in primary macrophages[J]. iScience, 25, 105514(2022).
[20] Pan L T, Yan R, Li W et al. Super-resolution microscopy reveals the native ultrastructure of the erythrocyte cytoskeleton[J]. Cell Reports, 22, 1151-1158(2018).
[21] Lux S E. Anatomy of the red cell membrane skeleton: unanswered questions[J]. Blood, 127, 187-199(2016).
[22] Hou M D, Xing F L, Yang J Y et al. Molecular resolution mapping of erythrocyte cytoskeleton by ultrastructure expansion single-molecule localization microscopy[J]. Small Methods, 7, e2201243(2023).
[23] Stone M B, Veatch S L. Steady-state cross-correlations for live two-colour super-resolution localization data sets[J]. Nature Communications, 6, 7347(2015).
[24] Sengupta P, Jovanovic-Talisman T, Skoko D et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis[J]. Nature Methods, 8, 969-975(2011).
[25] Yang J Y, Hu F, Hou M D et al. Voronoï analysis for super-resolution image of human erythrocyte membrane skeleton[J]. Chinese Journal of Lasers, 50, 1507104(2023).
[26] Veillette A, Chen J. SIRPα-CD47 immune checkpoint blockade in anticancer therapy[J]. Trends in Immunology, 39, 173-184(2018).
[27] Dermani F K, Samadi P, Rahmani G et al. PD-1/PD-L1 immune checkpoint: potential target for cancer therapy[J]. Journal of Cellular Physiology, 234, 1313-1325(2019).