• Infrared and Laser Engineering
  • Vol. 52, Issue 6, 20230197 (2023)
Xinpeng Jiang, Te Du, Hansi Ma, Zhaojian Zhang..., Xin He, Zhenfu Zhang, Huan Chen, Yang Yu, Sha Huang and Junbo Yang|Show fewer author(s)
Author Affiliations
  • College of Sciences, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/IRLA20230197 Cite this Article
    Xinpeng Jiang, Te Du, Hansi Ma, Zhaojian Zhang, Xin He, Zhenfu Zhang, Huan Chen, Yang Yu, Sha Huang, Junbo Yang. Research progress of infrared stealth technology of micro-nano optical structure (invited)[J]. Infrared and Laser Engineering, 2023, 52(6): 20230197 Copy Citation Text show less
    References

    [1] J Yang, X Zhang, X Zhang, et al. Beyond the visible: Bioinspired infrared adaptive materials. Advanced Materials, 33, 2004754(2021).

    [2] R Hu, W Xi, Y Liu, et al. Thermal camouflaging metamaterials. Materials Today, 45, 120-141(2021).

    [3] Li, Y, W Li, T Han, et al. Transforming heat transfer with thermal metamaterials and devices. Nature Reviews Materials, 6, 488-507(2021).

    [4] Jianhua Sang, Ganglin Wang. Infrared stealth of fixed wing aircraft. Stealth Technology, 2-7(2005).

    [5] Jianhua Sang, Zongbin Zhang. Development trends of infrared stealth technology. Infrared and Laser Engineering, 42, 14-19(2013).

    [6] Yibo Han, Xinfeng Yang, Shuhua Teng, . Detection of laser and infrared fusion target. Infrared and Laser Engineering, 47, 0804005(2018).

    [7] Jianhua Sang, Yong Zhang. Infrared stealth technology of air vehicles. Aeronautical Science and Technology, 5-7(2011).

    [8] F J Bosquespadilla, L N Landy, W K Smith, et al. Perfect metamaterial absorber. Physical Review Letters, 100, 207402(2008).

    [9] H Zhu, Q Li, C Tao, Y Hong, et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nature Communications, 12, 1805(2021).

    [10] Xinpeng Jiang, Zhaojian Zhang, Hansi Ma, et al. Tunable mid-infrared selective emitter based on inverse design metasurface for infrared stealth with thermal management. Optics Express, 30, 18250(2022).

    [11] Macleod H A. ThinFilm Optical Filters[M]. 4th ed. France: CRC Press, 2010.

    [12] K C Park. The extreme values of reflectivity and the condition for zero reflection from thin dielectric film on metal. Applied Optics, 3, 877(1964).

    [13] Yeh P. Optical Waves in Layered Media[M]. US: WileyInterscience, 2005.

    [14] Prosvirnin S, Papasimakis N, Fedotov V, et al. Metamaterials Plasmonics: Fundamentals, Modelling, Applications [M]. herls: Springer herls, 2009.

    [15] Maier S A. Plasmonics: Fundamentals Applications[M]. US: Springer, 2007.

    [16] Maier S A, Zayats A V, Hanham S M. Active Plasmonics Tuneable Plasmonic Metamaterials [M]. US: John Wiley Sons Inc, 2013.

    [17] Kaikai Du, Qiang Li, Yanbiao Lyu, et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light: Science and Application, 6, e16194(2017).

    [18] P Hosseini, C D Wright, H Bhaskaran. An optoelectronic framework enabled by low-dimensional phase-change films. Nature, 511, 206-211(2014).

    [19] K Du, L Cai, H Luoet, et al. Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material. Nanoscale, 10, 4415-4420(2018).

    [20] Wang, Q, E T F Rogers, B Gholipour, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature Photonics, 10, 60-65(2015).

    [21] J Feldmann, M Stegmaier, N Gruhler, et al. Calculating with light using a chip-scale all-optical abacus. Nature Communications, 8, 1256(2017).

    [22] V V Nikolai, V Gorden, H Thomas. Effective medium theories for irregular fluffy structures: aggregation of small particles. Applied Optics, 46, 4065-4072(2007).

    [23] X Jiang, D Chen, Z Zhang, et al. Dual-channel optical switch, refractive index sensor and slow light device based on a graphene metasurface. Optics Express, 28, 34079-34092(2020).

    [24] X Jiang, Z Zhang, D Chen, et al. Tunable multilayer-graphene-based broadband metamaterial selective absorber. Applied Optics, 59, 11137-11145(2020).

    [25] X Jiang, H Yuan, D Chen, et al. Metasurface based on inverse design for maximizing solar spectral absorption. Advanced Optical Materials, 9, 2100575(2021).

    [26] S Molesky, Z Lin, A Y Piggott, et al. Inverse design in nanophotonics. Nature Photonics, 12, 659-670(2018).

    [27] J Huang, H Ma, D Chen, et al. Digital nanophotonics: the highway to the integration of subwavelength-scale photonics. Nanophotonics, 10, 1011-1030(2021).

    [28] W Ma, Z Liu, Z A Kudyshev, et al. Deep learning for the design of photonic structures. Nature Photonics, 15, 77-90(2020).

    [29] Z A Kudyshev, A V Kildishev, V M Shalaev, et al. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. Applied Physics Reviews, 7, 021407(2020).

    [30] D Liu, Y Tan, E Khoram, et al. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics, 5, 1365-1369(2018).

    [31] Y Zhou, Z Qin, Z Liang, et al. Ultra-broadband metamaterial absorbers from long to very long infrared regime. Light: Science & Applications, 10, 138(2021).

    [32] Haonan Ge, Runzhang Xie, Jiaxiang Guo, et al. Artificial micro- and nano-structure enhanced long and very long-wavelength infrared detectors. Acta Physica Sinica, 71, 7-24(2022).

    [33] X Jiang, H Yuan, X He et al. Implementation of infrared camouflage with thermal management based on inverse design and hierarchical metamaterial. Nanophotonics, 12, 1891-1902(2023).

    [34] J K Zhang, J M Shi, D P Zhao, et al. Realization of compatible stealth material for infrared, laser and radar based on one-dimensional doping-structure photonic crystals. Infrared Physics & Technology, 85, 62-65(2017).

    [35] T Kim, J Y Bae, N Lee, et al. Hierarchical metamaterials for multispectral camouflage of infrared and microwaves. Advanced Functional Materials, 29, 1807319(2019).

    [36] X Feng, X Xie, M Pu, et al. Hierarchical metamaterials for laser-infrared-microwave compatible camouflage. Optics Express, 28, 9445-9453(2020).

    [37] N Lee, J S Lim, I Chang, et al. Flexible assembled metamaterials for infrared and microwave camouflage. Advanced Optical Materials, 10, 2200448(2022).

    [38] J Kim, C and Hahn J W Park. Metal-semiconductor-metal metasurface for multiband infrared stealth technology using camouflage color pattern in visible range. Advanced Optical Materials, 10, 2101930(2022).

    [39] S Fan. Thermal photonics and energy applications. Joule, 1, 264-273(2017).

    [40] Kai Ou, Feilong Yu, Jin Chen, et al. Research progress of broadband achromatic infrared metalens (Invited). Infrared and Laser Engineering, 50, 20211003(2021).

    [41] L Peng, D Liu, H Cheng, et al. A multilayer film based selective thermal emitter for infrared stealth technology. Advanced Optical Materials, 6, 1801006(2018).

    [42] M Pan, Y Huang, Q Li, et al. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy, 69, 104449(2020).

    [43] H Zhu, Q Li, C Zheng, et al. High-temperature infrared camouflage with efficient thermal management. Light Science & Application, 9, 60(2020).

    [44] K Yu, W Zhang, M Qian, et al. Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management based on dissipative dielectrics. Photonics Research, 11, 290-298(2023).

    [45] Z Xu, H Luo, H Zhu, et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting. Nano Letters, 21, 5269-5276(2021).

    [46] Y Kim, C Kim, Lee M. Parallel laser printing of a thermal emission pattern in a phase-change thin film cavity for infrared camouflage and security. Laser & Photonics Reviews, 16, 202100545(2021).

    [47] Z Xu, Q Li, K Du, et al. Spatially resolved dynamically reconfigurable multilevel control of thermal emission. Laser & Photonics Reviews, 14, 1900162(2019).

    [48] H Wei, J Gu, F Ren, et al. Kirigami-inspired reconfigurable thermal mimetic device. Laser & Photonics Reviews, 16, 2200383(2022).

    [49] Yi Wang, Dongqing Liu, Feng Zhou, . Research progress of adaptive camouflage materials and technology. Materials China, 39, 404-410(2020).

    [50] Y Qu, Q Li, L Cai, et al. Thermal camouflage based on the phase-changing material GST. Light: Science & Applications, 7, 26(2018).

    [51] C Kim, Y Kim, Lee M.. Laser-induced tuning and spatial control of the emissivity of phase-changing Ge2Sb2Te5 emitter for thermal camouflage. Advanced Materials Technologies, 7, 2101349(2022).

    [52] Y Liu, J Song, W Zhao, et al. Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. Nanophotonics, 9, 855-863(2020).

    [53] S Chandra, D Franklin, J Cozart, et al. Adaptive multispectral infrared camouflage. ACS Photonics, 5, 4513(2018).

    [54] D Liu, H Ji, R Peng, et al. Infrared chameleon-like behavior from VO2(M) thin films prepared by transformation of metastable VO2(B) for adaptive camouflage in both thermal atmospheric windows. Solar Energy Materials and Solar Cells, 185, 210-217(2018).

    [55] K Tang, X Wang, K Dong, et al. A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition. Advanced Materials, 32, 1907071(2020).

    [56] O Salihoglu, H B Uzlu, O Yakar, et al. Graphene-based adaptive thermal camouflage. Nano Letters, 18, 4541-4548(2018).

    [57] M S Ergoktas, G Bakan, E Kovalska, et al. Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nature Photonics, 15, 493-498(2021).

    [58] J Song, S Huang, Y Ma, et al. Radiative metasurface for thermal camouflage, illusion and messaging. Optics Express, 28, 875-885(2020).

    [59] M Li, D Liu, H Cheng, et al. Manipulating metals for adaptive thermal camouflage. Science Advances, 6, 3494(2020).

    Xinpeng Jiang, Te Du, Hansi Ma, Zhaojian Zhang, Xin He, Zhenfu Zhang, Huan Chen, Yang Yu, Sha Huang, Junbo Yang. Research progress of infrared stealth technology of micro-nano optical structure (invited)[J]. Infrared and Laser Engineering, 2023, 52(6): 20230197
    Download Citation