[1] J Yang, X Zhang, X Zhang, et al. Beyond the visible: Bioinspired infrared adaptive materials. Advanced Materials, 33, 2004754(2021).
[2] R Hu, W Xi, Y Liu, et al. Thermal camouflaging metamaterials. Materials Today, 45, 120-141(2021).
[3] Li, Y, W Li, T Han, et al. Transforming heat transfer with thermal metamaterials and devices. Nature Reviews Materials, 6, 488-507(2021).
[4] Jianhua Sang, Ganglin Wang. Infrared stealth of fixed wing aircraft. Stealth Technology, 2-7(2005).
[5] Jianhua Sang, Zongbin Zhang. Development trends of infrared stealth technology. Infrared and Laser Engineering, 42, 14-19(2013).
[6] Yibo Han, Xinfeng Yang, Shuhua Teng, . Detection of laser and infrared fusion target. Infrared and Laser Engineering, 47, 0804005(2018).
[7] Jianhua Sang, Yong Zhang. Infrared stealth technology of air vehicles. Aeronautical Science and Technology, 5-7(2011).
[8] F J Bosquespadilla, L N Landy, W K Smith, et al. Perfect metamaterial absorber. Physical Review Letters, 100, 207402(2008).
[9] H Zhu, Q Li, C Tao, Y Hong, et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nature Communications, 12, 1805(2021).
[10] Xinpeng Jiang, Zhaojian Zhang, Hansi Ma, et al. Tunable mid-infrared selective emitter based on inverse design metasurface for infrared stealth with thermal management. Optics Express, 30, 18250(2022).
[11] Macleod H A. ThinFilm Optical Filters[M]. 4th ed. France: CRC Press, 2010.
[12] K C Park. The extreme values of reflectivity and the condition for zero reflection from thin dielectric film on metal. Applied Optics, 3, 877(1964).
[13] Yeh P. Optical Waves in Layered Media[M]. US: WileyInterscience, 2005.
[14] Prosvirnin S, Papasimakis N, Fedotov V, et al. Metamaterials Plasmonics: Fundamentals, Modelling, Applications [M]. herls: Springer herls, 2009.
[15] Maier S A. Plasmonics: Fundamentals Applications[M]. US: Springer, 2007.
[16] Maier S A, Zayats A V, Hanham S M. Active Plasmonics Tuneable Plasmonic Metamaterials [M]. US: John Wiley Sons Inc, 2013.
[17] Kaikai Du, Qiang Li, Yanbiao Lyu, et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light: Science and Application, 6, e16194(2017).
[18] P Hosseini, C D Wright, H Bhaskaran. An optoelectronic framework enabled by low-dimensional phase-change films. Nature, 511, 206-211(2014).
[19] K Du, L Cai, H Luoet, et al. Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material. Nanoscale, 10, 4415-4420(2018).
[20] Wang, Q, E T F Rogers, B Gholipour, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature Photonics, 10, 60-65(2015).
[21] J Feldmann, M Stegmaier, N Gruhler, et al. Calculating with light using a chip-scale all-optical abacus. Nature Communications, 8, 1256(2017).
[22] V V Nikolai, V Gorden, H Thomas. Effective medium theories for irregular fluffy structures: aggregation of small particles. Applied Optics, 46, 4065-4072(2007).
[23] X Jiang, D Chen, Z Zhang, et al. Dual-channel optical switch, refractive index sensor and slow light device based on a graphene metasurface. Optics Express, 28, 34079-34092(2020).
[24] X Jiang, Z Zhang, D Chen, et al. Tunable multilayer-graphene-based broadband metamaterial selective absorber. Applied Optics, 59, 11137-11145(2020).
[25] X Jiang, H Yuan, D Chen, et al. Metasurface based on inverse design for maximizing solar spectral absorption. Advanced Optical Materials, 9, 2100575(2021).
[26] S Molesky, Z Lin, A Y Piggott, et al. Inverse design in nanophotonics. Nature Photonics, 12, 659-670(2018).
[27] J Huang, H Ma, D Chen, et al. Digital nanophotonics: the highway to the integration of subwavelength-scale photonics. Nanophotonics, 10, 1011-1030(2021).
[28] W Ma, Z Liu, Z A Kudyshev, et al. Deep learning for the design of photonic structures. Nature Photonics, 15, 77-90(2020).
[29] Z A Kudyshev, A V Kildishev, V M Shalaev, et al. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. Applied Physics Reviews, 7, 021407(2020).
[30] D Liu, Y Tan, E Khoram, et al. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics, 5, 1365-1369(2018).
[31] Y Zhou, Z Qin, Z Liang, et al. Ultra-broadband metamaterial absorbers from long to very long infrared regime. Light: Science & Applications, 10, 138(2021).
[32] Haonan Ge, Runzhang Xie, Jiaxiang Guo, et al. Artificial micro- and nano-structure enhanced long and very long-wavelength infrared detectors. Acta Physica Sinica, 71, 7-24(2022).
[33] X Jiang, H Yuan, X He et al. Implementation of infrared camouflage with thermal management based on inverse design and hierarchical metamaterial. Nanophotonics, 12, 1891-1902(2023).
[34] J K Zhang, J M Shi, D P Zhao, et al. Realization of compatible stealth material for infrared, laser and radar based on one-dimensional doping-structure photonic crystals. Infrared Physics & Technology, 85, 62-65(2017).
[35] T Kim, J Y Bae, N Lee, et al. Hierarchical metamaterials for multispectral camouflage of infrared and microwaves. Advanced Functional Materials, 29, 1807319(2019).
[36] X Feng, X Xie, M Pu, et al. Hierarchical metamaterials for laser-infrared-microwave compatible camouflage. Optics Express, 28, 9445-9453(2020).
[37] N Lee, J S Lim, I Chang, et al. Flexible assembled metamaterials for infrared and microwave camouflage. Advanced Optical Materials, 10, 2200448(2022).
[38] J Kim, C and Hahn J W Park. Metal-semiconductor-metal metasurface for multiband infrared stealth technology using camouflage color pattern in visible range. Advanced Optical Materials, 10, 2101930(2022).
[39] S Fan. Thermal photonics and energy applications. Joule, 1, 264-273(2017).
[40] Kai Ou, Feilong Yu, Jin Chen, et al. Research progress of broadband achromatic infrared metalens (Invited). Infrared and Laser Engineering, 50, 20211003(2021).
[41] L Peng, D Liu, H Cheng, et al. A multilayer film based selective thermal emitter for infrared stealth technology. Advanced Optical Materials, 6, 1801006(2018).
[42] M Pan, Y Huang, Q Li, et al. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy, 69, 104449(2020).
[43] H Zhu, Q Li, C Zheng, et al. High-temperature infrared camouflage with efficient thermal management. Light Science & Application, 9, 60(2020).
[44] K Yu, W Zhang, M Qian, et al. Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management based on dissipative dielectrics. Photonics Research, 11, 290-298(2023).
[45] Z Xu, H Luo, H Zhu, et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting. Nano Letters, 21, 5269-5276(2021).
[46] Y Kim, C Kim, Lee M. Parallel laser printing of a thermal emission pattern in a phase-change thin film cavity for infrared camouflage and security. Laser & Photonics Reviews, 16, 202100545(2021).
[47] Z Xu, Q Li, K Du, et al. Spatially resolved dynamically reconfigurable multilevel control of thermal emission. Laser & Photonics Reviews, 14, 1900162(2019).
[48] H Wei, J Gu, F Ren, et al. Kirigami-inspired reconfigurable thermal mimetic device. Laser & Photonics Reviews, 16, 2200383(2022).
[49] Yi Wang, Dongqing Liu, Feng Zhou, . Research progress of adaptive camouflage materials and technology. Materials China, 39, 404-410(2020).
[50] Y Qu, Q Li, L Cai, et al. Thermal camouflage based on the phase-changing material GST. Light: Science & Applications, 7, 26(2018).
[51] C Kim, Y Kim, Lee M.. Laser-induced tuning and spatial control of the emissivity of phase-changing Ge2Sb2Te5 emitter for thermal camouflage. Advanced Materials Technologies, 7, 2101349(2022).
[52] Y Liu, J Song, W Zhao, et al. Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. Nanophotonics, 9, 855-863(2020).
[53] S Chandra, D Franklin, J Cozart, et al. Adaptive multispectral infrared camouflage. ACS Photonics, 5, 4513(2018).
[54] D Liu, H Ji, R Peng, et al. Infrared chameleon-like behavior from VO2(M) thin films prepared by transformation of metastable VO2(B) for adaptive camouflage in both thermal atmospheric windows. Solar Energy Materials and Solar Cells, 185, 210-217(2018).
[55] K Tang, X Wang, K Dong, et al. A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition. Advanced Materials, 32, 1907071(2020).
[56] O Salihoglu, H B Uzlu, O Yakar, et al. Graphene-based adaptive thermal camouflage. Nano Letters, 18, 4541-4548(2018).
[57] M S Ergoktas, G Bakan, E Kovalska, et al. Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nature Photonics, 15, 493-498(2021).
[58] J Song, S Huang, Y Ma, et al. Radiative metasurface for thermal camouflage, illusion and messaging. Optics Express, 28, 875-885(2020).
[59] M Li, D Liu, H Cheng, et al. Manipulating metals for adaptive thermal camouflage. Science Advances, 6, 3494(2020).