• Laser & Optoelectronics Progress
  • Vol. 59, Issue 23, 2300004 (2022)
Wenri Qian** and Yongmei Zhang*
Author Affiliations
  • College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu, China
  • show less
    DOI: 10.3788/LOP202259.2300004 Cite this Article Set citation alerts
    Wenri Qian, Yongmei Zhang. Research Progress of Detecting Orbital Angular Momentum States of Photons Through Metasurfaces[J]. Laser & Optoelectronics Progress, 2022, 59(23): 2300004 Copy Citation Text show less
    References

    [1] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review. A, Atomic, Molecular, and Optical Physics, 45, 8185-8189(1992).

    [2] Volke-Sepulveda K, Garcés-Chávez V, Chávez-Cerda S et al. Orbital angular momentum of a high-order Bessel light beam[J]. Journal of Optics B: Quantum and Semiclassical Optics, 4, S82-S89(2002).

    [3] Vasara A, Turunen J, Friberg A T. Realization of general nondiffracting beams with computer-generated holograms[J]. Journal of the Optical Society of America. A, Optics and Image Science, 6, 1748-1754(1989).

    [4] Kotlyar V V, Skidanov R V, Khonina S N et al. Hypergeometric modes[J]. Optics Letters, 32, 742-744(2007).

    [5] Curtis J E, Grier D G. Structure of optical vortices[J]. Physical Review Letters, 90, 133901(2003).

    [6] Gecevičius M, Drevinskas R, Beresna M et al. Single beam optical vortex tweezers with tunable orbital angular momentum[J]. Applied Physics Letters, 104, 231110(2014).

    [7] Knöner G, Parkin S, Nieminen T A et al. Integrated optomechanical microelements[J]. Optics Express, 15, 5521-5530(2007).

    [8] Kuga T, Torii Y, Shiokawa N et al. Novel optical trap of atoms with a doughnut beam[J]. Physical Review Letters, 78, 4713-4716(1997).

    [9] Marzo A, Caleap M, Drinkwater B W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of Mie particles[J]. Physical Review Letters, 120, 044301(2018).

    [10] Mair A, Vaziri A, Weihs G et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 412, 313-316(2001).

    [11] Yan L, Gregg P, Karimi E et al. Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy[J]. Optica, 2, 900-903(2015).

    [12] Mohammadi S M, Daldorff L K S, Bergman J E S et al. Orbital angular momentum in radio: a system study[J]. IEEE Transactions on Antennas and Propagation, 58, 565-572(2010).

    [13] Tamburini F, Mari E, Sponselli A et al. Encoding many channels on the same frequency through radio vorticity: first experimental test[J]. New Journal of Physics, 14, 033001(2012).

    [14] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).

    [15] Yan Y, Xie G D, Lavery M P J et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 5, 4876(2014).

    [16] Hui X N, Zheng S L, Chen Y L et al. Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas[J]. Scientific Reports, 5, 10148(2015).

    [17] Uribe-Patarroyo N, Fraine A, Simon D S et al. Object identification using correlated orbital angular momentum states[J]. Physical Review Letters, 110, 043601(2013).

    [18] Liu K, Cheng Y Q, Yang Z C et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 14, 711-714(2015).

    [19] Lin M T, Gao Y, Liu P G et al. Improved OAM-based radar targets detection using uniform concentric circular arrays[J]. International Journal of Antennas and Propagation, 2016, 1852659(2016).

    [20] Lin M T, Gao Y, Liu P G et al. Super-resolution orbital angular momentum based radar targets detection[J]. Electronics Letters, 52, 1168-1170(2016).

    [21] Bu X X, Zhang Z, Chen L Y et al. Implementation of vortex electromagnetic waves high-resolution synthetic aperture radar imaging[J]. IEEE Antennas and Wireless Propagation Letters, 17, 764-767(2018).

    [22] Bu X X, Zhang Z, Liang X D et al. A novel scheme for MIMO-SAR systems using rotational orbital angular momentum[J]. Sensors, 18, 3511(2018).

    [23] Basistiy I V, Bazhenov V Y, Soskin M S et al. Optics of light beams with screw dislocations[J]. Optics Communications, 103, 422-428(1993).

    [24] Harris M, Hill C A, Tapster P R et al. Laser modes with helical wave fronts[J]. Physical Review. A, Atomic, Molecular, and Optical Physics, 49, 3119-3122(1994).

    [25] Soskin M S, Gorshkov V N, Vasnetsov M V et al. Topological charge and angular momentum of light beams carrying optical vortices[J]. Physical Review A, 56, 4064-4075(1997).

    [26] Leach J, Courtial J, Skeldon K et al. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon[J]. Physical Review Letters, 92, 013601(2004).

    [27] Leach J, Padgett M J, Barnett S M et al. Measuring the orbital angular momentum of a single photon[J]. Physical Review Letters, 88, 257901(2002).

    [28] Wei H Q, Xue X, Leach J et al. Simplified measurement of the orbital angular momentum of single photons[J]. Optics Communications, 223, 117-122(2003).

    [29] Vasnetsov M V, Torres J P, Petrov D V et al. Observation of the orbital angular momentum spectrum of a light beam[J]. Optics Letters, 28, 2285-2287(2003).

    [30] Jin J J, Luo J, Zhang X H et al. Generation and detection of orbital angular momentum via metasurface[J]. Scientific Reports, 6, 24286(2016).

    [31] Liu J P, Min C J, Lei T et al. Generation and detection of broadband multi-channel orbital angular momentum by micrometer-scale meta-reflectarray[J]. Optics Express, 24, 212-218(2016).

    [32] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 13, 139-150(2014).

    [33] Fu S Y, Wang T L, Gao Y et al. Diagnostics of the topological charge of optical vortex by a phase-diffractive element[J]. Chinese Optics Letters, 14, 80501-80505(2016).

    [34] Alperin S N, Niederriter R D, Gopinath J T et al. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens[J]. Optics Letters, 41, 5019-5022(2016).

    [35] Berkhout G C G, Lavery M P J, Courtial J et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 105, 153601(2010).

    [36] Chaitanya N A, Jabir M V, Samanta G K. Efficient nonlinear generation of high power, higher order, ultrafast “perfect” vortices in green[J]. Optics Letters, 41, 1348-1351(2016).

    [37] Dai K J, Gao C Q, Zhong L et al. Measuring OAM states of light beams with gradually-changing-period gratings[J]. Optics Letters, 40, 562-565(2015).

    [38] Denisenko V, Shvedov V, Desyatnikov A S et al. Determination of topological charges of polychromatic optical vortices[J]. Optics Express, 17, 23374-23379(2009).

    [39] Denisenko V G, Soskin M S, Vasnetsov M V. Transformation of Laguerre-Gaussian modes carrying optical vortices and their orbital angular momentum by cylindrical lens[J]. Proceedings of SPIE, 4607, 54-58(2002).

    [40] Emile O, Emile J. Young’s double-slit interference pattern from a twisted beam[J]. Applied Physics B, 117, 487-491(2014).

    [41] Fu D Z, Chen D X, Liu R F et al. Probing the topological charge of a vortex beam with dynamic angular double slits[J]. Optics Letters, 40, 788-791(2015).

    [42] Fu S Y, Wang T L, Zhang S K et al. Integrating 5 × 5 Dammann gratings to detect orbital angular momentum states of beams with the range of-24 to +24[J]. Applied Optics, 55, 1514-1517(2016).

    [43] Fu S Y, Zhang S K, Wang T L et al. Measurement of orbital angular momentum spectra of multiplexing optical vortices[J]. Optics Express, 24, 6240-6248(2016).

    [44] Gibson G, Courtial J, Padgett M J et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 12, 5448-5456(2004).

    [45] Ii G G, Courtial J, Vasnetsov M et al. Increasing the data density of free-space optical communications using orbital angular momentum[J]. Proceedings of SPIE, 5550, 367-373(2004).

    [46] Hickmann J M, Fonseca E J S, Soares W C et al. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum[J]. Physical Review Letters, 105, 053904(2010).

    [47] Lavery M P J, Berkhout G C G, Courtial J et al. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation[J]. Journal of Optics, 13, 064006(2011).

    [48] Lavery M P J, Robertson D J, Berkhout G C G et al. Refractive elements for the measurement of the orbital angular momentum of a single photon[J]. Optics Express, 20, 2110-2115(2012).

    [49] Li Y J, Deng J, Li J P et al. Sensitive orbital angular momentum (OAM) monitoring by using gradually changing-period phase grating in OAM-multiplexing optical communication systems[J]. IEEE Photonics Journal, 8, 7902306(2016).

    [50] Liu R F, Long J L, Wang F R et al. Characterizing the phase profile of a vortex beam with angular-double-slit interference[J]. Journal of Optics, 15, 125712(2013).

    [51] Mirhosseini M, Malik M, Shi Z M et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature Communications, 4, 2781(2013).

    [52] Moreno I, Davis J A, Pascoguin B M et al. Vortex sensing diffraction gratings[J]. Optics Letters, 34, 2927-2929(2009).

    [53] Serna J, Encinas-Sanz F, Nemeş G. Complete spatial characterization of a pulsed doughnut-type beam by use of spherical optics and a cylindrical lens[J]. Journal of the Optical Society of America A, 18, 1726-1733(2001).

    [54] Soares W C, Vidal I, Caetano D P et al. Measuring orbital angular momentum of a photon using the diffraction reciprocal lattice of a triangular slit[C], FThO2(2008).

    [55] Stahl C, Gbur G. Analytic calculation of vortex diffraction by a triangular aperture[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 33, 1175-1180(2016).

    [56] Sztul H I, Alfano R R. Double-slit interference with Laguerre-Gaussian beams[J]. Optics Letters, 31, 999-1001(2006).

    [57] Vaity P, Banerji J, Singh R P. Measuring the topological charge of an optical vortex by using a tilted convex lens[J]. Physics Letters A, 377, 1154-1156(2013).

    [58] Liu Y X, Tao H, Pu J X et al. Detecting the topological charge of vortex beams using an annular triangle aperture[J]. Optics & Laser Technology, 43, 1233-1236(2011).

    [59] Zhang N, Yuan X C, Burge R E. Extending the detection range of optical vortices by Dammann vortex gratings[J]. Optics Letters, 35, 3495-3497(2010).

    [60] Zheng S, Wang J. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings[J]. Scientific Reports, 7, 40781(2017).

    [61] Zhu J, Zhang P, Fu D Z et al. Probing the fractional topological charge of a vortex light beam by using dynamic angular double slits[J]. Photonics Research, 4, 187(2016).

    [62] Munk B A[M]. Frequency selective surfaces: theory and design(2000).

    [63] Li J X, Yuan Y Y, Wu Q et al. Dual-band independent phase control based on high efficiency metasurface[J]. Chinese Optics Letters, 19, 100501(2021).

    [64] Wang H Y, Zhang Z Y, Zhao K et al. Independent phase manipulation of co-and cross-polarizations with all-dielectric metasurface[J]. Chinese Optics Letters, 19, 053601(2021).

    [65] Zhang X Y, Guan C Y, Wang K D et al. Multi-focus optical fiber lens based on all-dielectric metasurface[J]. Chinese Optics Letters, 19, 050601(2021).

    [66] Ren H R, Briere G, Fang X Y et al. Metasurface orbial angular momentum holography[J]. Nature Communications, 10, 2986(2019).

    [67] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [68] Genevet P, Yu N F, Aieta F et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Applied Physics Letters, 100, 013101(2012).

    [69] Yu N F, Genevet P, Aieta F et al. Flat optics: controlling wavefronts with optical antenna metasurfaces[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 4700423(2013).

    [70] Chen M L N, Jiang L J, Sha W. Detection of orbital angular momentum with metasurface at microwave band[J]. IEEE Antennas and Wireless Propagation Letters, 17, 110-113(2018).

    [71] Ou K, Li G H, Li T X et al. High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces[J]. Nanoscale, 10, 19154-19161(2018).

    [72] Wang J G, Shao Z K, Wen Y H et al. All-dielectric metasurface grating for on-chip multi-channel orbital angular momentum generation and detection[J]. Optics Express, 27, 18794-18802(2019).

    [73] Guo Y H, Zhang S C, Pu M B et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation[J]. Light: Science & Applications, 10, 63(2021).

    [74] Zhang S C. Research on vortex beam detection technology based on spin decoupled metasurface[D](2021).

    [75] Chen X L, Zhou H L, Liu M et al. Measurement of orbital angular momentum by self-interference using a plasmonic metasurface[J]. IEEE Photonics Journal, 8, 4800308(2016).

    [76] Goodman J W[M]. Introduction to Fourier optics(2005).

    [77] Zhang Y C, Yang X D, Gao J. Orbital angular momentum transformation of optical vortex with aluminum metasurfaces[J]. Scientific Reports, 9, 9133(2019).

    [78] Bouchard F, de Leon I, Schulz S A et al. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges[J]. Applied Physics Letters, 105, 101905(2014).

    [79] Ding G W, Chen K, Luo X Y et al. Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion[J]. Physical Review Applied, 11, 044043(2019).

    Wenri Qian, Yongmei Zhang. Research Progress of Detecting Orbital Angular Momentum States of Photons Through Metasurfaces[J]. Laser & Optoelectronics Progress, 2022, 59(23): 2300004
    Download Citation