• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0228011 (2023)
Lu Xiong, Zhenwen Deng, Wei Tian*, and Zhiang Wang
Author Affiliations
  • School of Automotive Studies, Tongji University, Shanghai 201804, China
  • show less
    DOI: 10.3788/LOP220712 Cite this Article Set citation alerts
    Lu Xiong, Zhenwen Deng, Wei Tian, Zhiang Wang. Three-Dimensional Pedestrian Detection by Fusing Image Semantics and Point Cloud Spatial Visibility Features[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0228011 Copy Citation Text show less
    References

    [1] Zou Z Y, Gai S Y, Da F P et al. Occluded pedestrian detection algorithm based on attention mechanism[J]. Acta Optica Sinica, 41, 1515001(2021).

    [2] Yao J, Yu F Q. Pedestrian detection based on combination of candidate region location and HOG-CLBP features[J]. Laser & Optoelectronics Progress, 58, 0210015(2021).

    [3] Ku J, Mozifian M, Lee J et al. Joint 3D proposal generation and object detection from view aggregation[C], 18392975(2018).

    [4] Charles R Q, Liu W, Wu C X et al. Frustum PointNets for 3D object detection from RGB-D data[C], 918-927(2018).

    [5] Charles R Q, Hao S, Mo K C et al. PointNet: deep learning on point sets for 3D classification and segmentation[C], 77-85(2017).

    [6] Vora S, Lang A H, Helou B et al. PointPainting: sequential fusion for 3D object detection[C], 4603-4611(2020).

    [7] Zhou Y, Tuzel O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C], 4490-4499(2018).

    [8] Lang A H, Vora S, Caesar H et al. PointPillars: fast encoders for object detection from point clouds[C], 12689-12697(2019).

    [9] Zhu H Q, Deng J J, Zhang Y et al. VPFNet: improving 3D object detection with virtual point based LiDAR and stereo data fusion[EB/OL]. https://arxiv.org/abs/2111.14382

    [10] Xu Q G, Zhou Y, Wang W Y et al. SPG: unsupervised domain adaptation for 3D object detection via semantic point generation[C], 15426-15436(2021).

    [11] Aleksandrov M, Zlatanova S, Heslop D J. Voxelisation algorithms and data structures: a review[J]. Sensors, 21, 8241(2021).

    [12] Siam M, Gamal M, Abdel-Razek M et al. A comparative study of real-time semantic segmentation for autonomous driving[C], 700-70010(2018).

    [13] Chen L C, Zhu Y K, Papandreou G et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[EB/OL]. https://arxiv.org/abs/1802.02611

    [14] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C], 3354-3361(2012).

    [15] Caesar H, Bankiti V, Lang A H et al. nuScenes: a multimodal dataset for autonomous driving[C], 11618-11628(2020).

    [16] Hornung A, Wurm K M, Bennewitz M et al. OctoMap: an efficient probabilistic 3D mapping framework based on octrees[J]. Autonomous Robots, 34, 189-206(2013).

    [17] Hu P Y, Ziglar J, Held D et al. What You see is what You get: exploiting visibility for 3D object detection[C], 10998-11006(2020).

    [18] Yan Y, Mao Y X, Li B. SECOND: sparsely embedded convolutional detection[J]. Sensors, 18, 3337(2018).

    [19] Shi S S, Wang X G, Li H S. PointRCNN: 3D object proposal generation and detection from point cloud[C], 770-779(2019).

    Lu Xiong, Zhenwen Deng, Wei Tian, Zhiang Wang. Three-Dimensional Pedestrian Detection by Fusing Image Semantics and Point Cloud Spatial Visibility Features[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0228011
    Download Citation