• Nano-Micro Letters
  • Vol. 16, Issue 1, 153 (2024)
Shidong Xue1,2, Guanghan Huang3, Qing Chen4, Xungai Wang1..., Jintu Fan1,5 and Dahua Shou1,2,5,6,*|Show fewer author(s)
Author Affiliations
  • 1School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, People’s Republic of China
  • 2Future Intelligent Wear Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, People’s Republic of China
  • 3State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People’s Republic of China
  • 4Shanghai International Fashion Innovation Center, Donghua University, Shanghai 200051, People’s Republic of China
  • 5Research Centre of Textiles for Future Fashion, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, People’s Republic of China
  • 6Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01360-1 Cite this Article
    Shidong Xue, Guanghan Huang, Qing Chen, Xungai Wang, Jintu Fan, Dahua Shou. Personal Thermal Management by Radiative Cooling and Heating[J]. Nano-Micro Letters, 2024, 16(1): 153 Copy Citation Text show less
    References

    [1] ASHRAE. Standard 55–2017. “Thermal environmental conditions for human occupancy”. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (2017)

    [2] ASHRAE. Standard 55–1992. “Thermal environmental conditions for human occupancy”. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (1992)

    [3] A. Alahmer, M. Omar, Vehicular cabins’ thermal comfort zones; fanger and berkley modeling. Veh. Eng. 1(1), 19–32 (2013)

    [4] Y.K. Axelrod, M.N. Diringer, Temperature management in acute neurologic disorders. Neurol. Clin. 26(2), 585–603 (2008).

    [5] A.P.C. Chan, W. Yi, Heat stress and its impacts on occupational health and performance. Indoor Built Environ. 25, 3–5 (2016).

    [6] L.T. Biardeau, L.W. Davis, P. Gertler, C. Wolfram, Heat exposure and global air conditioning. Nat. Sustain. 3, 25–28 (2020).

    [7] T.A. Carleton, S.M. Hsiang, Social and economic impacts of climate. Science 353, aad9837 (2016).

    [8] The Building Technologies Office (BTO) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. Buildings energy data book (2011).

    [9] T. Hoyt, E. Arens, H. Zhang, Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings. Build. Environ. 88, 89–96 (2015).

    [10] A.P. Gagge, A.C. Burton, H.C. Bazett, A practical system of units for the description of the heat exchange of man with his environment. Science 94, 428–430 (1941).

    [11] A.H. Woodcock, Moisture transfer in textile systems, part I. Text. Res. J. 32, 628–633 (1962).

    [12] J.D. Hardy, E.F. Dubois, Regulation of heat loss from the human body. Proc. Natl. Acad. Sci. U. S. A. 23, 624–631 (1937).

    [13] M. Rothmaier, M. Weder, A. Meyer-Heim, J. Kesselring, Design and performance of personal cooling garments based on three-layer laminates. Med. Biol. Eng. Comput. 46, 825–832 (2008).

    [14] M. Zhao, C. Gao, F. Wang, K. Kuklane, I. Holmér et al., A study on local cooling of garments with ventilation fans and openings placed at different torso sites. Int. J. Ind. Ergon. 43, 232–237 (2013).

    [15] C. Al Sayed, L. Vinches, O. Dupuy, W. Douzi, B. Dugue et al., Air/CO2 cooling garment: description and benefits of use for subjects exposed to a hot and humid climate during physical activities. Int. J. Min. Sci. Technol. 29, 899–903 (2019).

    [16] S. Hong, Y. Gu, J.K. Seo, J. Wang, P. Liu et al., Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5, eaaw0536 (2019).

    [17] G. Bartkowiak, A. Dąbrowska, A. Greszta, Development of smart textile materials with shape memory alloys for application in protective clothing. Materials 13, 689 (2020).

    [18] S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696 (2021).

    [19] T. Guo, B. Shang, B. Duan, X. Luo, Design and testing of a liquid cooled garment for hot environments. J. Therm. Biol. 49–50, 47–54 (2015).

    [20] J. Wu, R. Hu, S. Zeng, W. Xi, S. Huang et al., Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS Appl. Mater. Interfaces 12, 19015–19022 (2020).

    [21] U. Sajjad, K. Hamid, Tauseef-ur-Rehman, M. Sultan, N. Abbas et al., Personal thermal management—a review on strategies, progress, and prospects. Int. Commun. Heat Mass Transf. 130, 105739 (2022).

    [22] Z. Ma, D. Zhao, F. Wang, R. Yang, A novel thermal comfort and energy saving evaluation model for radiative cooling and heating textiles. Energy Build. 258, 111842 (2022).

    [23] R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren et al., Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 10, 1903921 (2020).

    [24] Z. Ma, D. Zhao, C. She, Y. Yang, R. Yang, Personal thermal management techniques for thermal comfort and building energy saving. Mater. Today Phys. 20, 100465 (2021).

    [25] B. Yang, X. Ding, F. Wang, A. Li, A review of intensified conditioning of personal micro-environments: moving closer to the human body. Energy Built Environ. 2, 260–270 (2021).

    [26] W. Yi, Y. Zhao, A.P.C. Chan, Evaluation of the ventilation unit for personal cooling system (PCS). Int. J. Ind. Ergon. 58, 62–68 (2017).

    [27] L. Li, W.-D. Liu, Q. Liu, Z.-G. Chen, Multifunctional wearable thermoelectrics for personal thermal management. Adv. Funct. Mater. 32, 2200548 (2022).

    [28] H. Wu, X.-L. Shi, J. Duan, Q. Liu, Z.-G. Chen, Advances in Ag2Se-based thermoelectrics from materials to applications. Energy Environ. Sci. 16, 1870–1906 (2023).

    [29] H. Wu, X.-L. Shi, Y. Mao, M. Li, W.-D. Liu et al., Optimized thermoelectric performance and plasticity of ductile semiconductor Ag2S0.5Se0.5 via dual-phase engineering. Adv. Energy Mater. 13, 2302551 (2023).

    [30] J. Mao, G. Chen, Z. Ren, Thermoelectric cooling materials. Nat. Mater. 20, 454–461 (2021).

    [31] Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15, 31 (2023).

    [32] H. Su, P. Lin, H. Lu, X. Zhao, X. Sheng et al., Janus-type hydroxyapatite-incorporated kevlar Aerogel@Kevlar aerogel supported phase-change material gel toward wearable personal thermal management. ACS Appl. Mater. Interfaces 14, 12617–12629 (2022).

    [33] H. Liu, F. Zhou, X. Shi, K. Sun, Y. Kou et al., A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano Micro Lett. 15, 29 (2023).

    [34] J. Wu, M. Wang, L. Dong, C. Zhu, J. Shi et al., Ultraflexible, breathable, and form-stable phase change fibrous membranes by green electrospinning for personal thermal management. ACS Sustain. Chem. Eng. 10, 7873–7882 (2022).

    [35] M.O. Faruk, A. Ahmed, M.A. Jalil, M.T. Islam, A.M. Shamim et al., Functional textiles and composite based wearable thermal devices for Joule heating: progress and perspectives. Appl. Mater. Today 23, 101025 (2021).

    [36] O.A. Mohamed, S.H. Masood, W. Xu, Nickel-titanium shape memory alloys made by selective laser melting: a review on process optimisation. Adv. Manuf. 10, 24–58 (2022).

    [37] W.-K. Jung, S.-M. Lee, S.-H. Ahn, J. Park, Development and assessment of a knitted shape memory alloy-based multifunctional elbow brace. J. Ind. Text. 51, 1989S-2009S (2022).

    [38] L. Wang, M. Pan, Y. Lu, W. Song, S. Liu et al., Developing smart fabric systems with shape memory layer for improved thermal protection and thermal comfort. Mater. Des. 221, 110922 (2022).

    [39] H. He, J. Liu, Y. Wang, Y. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16, 2953–2967 (2022).

    [40] K. Jin, M. Zhang, J. Wang, Z. Jin, J. Sun et al., Robust highly conductive fabric with fluorine-free healable superhydrophobicity for the efficient deicing of outdoor’s equipment. Colloids Surf. A Physicochem. Eng. Aspects 651, 129639 (2022).

    [41] P. Yotprayoonsak, N. Anusak, J. Virtanen, V. Kangas, V. Promarak, Facile fabrication of flexible and conductive AuNP/DWCNT fabric with enhanced Joule heating efficiency via spray coating route. Microelectron. Eng. 255, 111718 (2022).

    [42] J. Tan, Q. Yang, G. Hu, H. Zhang, L. Pei et al., Experimental study on the temperature-sensitive behavior of poly-n-isopropylacrylamide/graphene oxide composites and the flexible conductive cotton fabrics. Polym. Test. 110, 107563 (2022).

    [43] P. Tang, Z. Deng, Y. Zhang, L.-X. Liu, Z. Wang et al., Tough, strong, and conductive graphene fibers by optimizing surface chemistry of graphene oxide precursor. Adv. Funct. Mater. 32, 2112156 (2022).

    [44] L. Yang, L. Pan, H. Xiang, X. Fei, M. Zhu, Organic–inorganic hybrid conductive network to enhance the electrical conductivity of graphene-hybridized polymeric fibers. Chem. Mater. 34, 2049–2058 (2022).

    [45] H. Yu, P. Guo, M. Qin, G. Han, L. Chen et al., Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure. Compos. Sci. Technol. 222, 109406 (2022).

    [46] Y.S. Ju, Thermal management and control of wearable devices. iScience 25, 104587 (2022).

    [47] X. Zhang, X. Chao, L. Lou, J. Fan, Q. Chen et al., Personal thermal management by thermally conductive composites: a review. Compos. Commun. 23, 100595 (2021).

    [48] Z. Duan, M. Wang, X. Dong, J. Liu, X. Zhao, Experimental and numerical investigation of wicking and evaporation performance of fibrous materials for evaporative cooling. Energy Build. 255, 111675 (2022).

    [49] H. Gao, A. Shawn Deaton, R. Barker, A new test method for evaluating the evaporative cooling efficiency of fabrics using a dynamic sweating hot plate. Meas. Sci. Technol. 33, 125601 (2022).

    [50] Y. Li, Z. An, X. Liu, R. Zhang, A radiative cooling paper based on ceramic fiber for thermal management of human head. Sol. Energy Mater. Sol. Cells 246, 111918 (2022).

    [51] L. Cai, A.Y. Song, W. Li, P.-C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30, e1802152 (2018).

    [52] S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16, 182–190 (2022).

    [53] J. Xu, R. Wan, W. Xu, Z. Ma, X. Cheng et al., Colored radiative cooling coatings using phosphor dyes. Mater. Today Nano 19, 100239 (2022).

    [54] J.P. Bijarniya, J. Sarkar, P. Maiti, Review on passive daytime radiative cooling: fundamentals, recent researches, challenges and opportunities. Renew. Sustain. Energy Rev. 133, 110263 (2020).

    [55] Y. Wang, T. Wang, J. Liang, J. Wu, M. Yang et al., Controllable-morphology polymer blend photonic metafoam for radiative cooling. Mater. Horiz. 10, 5060–5070 (2023).

    [56] Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett. 15, 160 (2023).

    [57] M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano Micro Lett. 15, 176 (2023).

    [58] Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4, 724–742 (2020).

    [59] L. Lei, S. Shi, D. Wang, S. Meng, J.-G. Dai et al., Recent advances in thermoregulatory clothing: materials, mechanisms, and perspectives. ACS Nano 17, 1803–1830 (2023).

    [60] A.S. Farooq, P. Zhang, Fundamentals, materials and strategies for personal thermal management by next-generation textiles. Compos. Part A Appl. Sci. Manuf. 142, 106249 (2021).

    [61] J. Liang, J. Wu, J. Guo, H. Li, X. Zhou et al., Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl. Sci. Rev. 10, nwac208 (2023).

    [62] M.-C. Huang, M. Yang, X.-J. Guo, C.-H. Xue, H.-D. Wang et al., Scalable multifunctional radiative cooling materials. Prog. Mater. Sci. 137, 101144 (2023).

    [63] F.L. Zhu, Q.Q. Feng, Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments. Int. J. Therm. Sci. 165, 106899 (2021).

    [64] M. He, B. Zhao, X. Yue, Y. Chen, F. Qiu et al., Infrared radiative modulating textiles for personal thermal management: principle, design and application. Nano Energy 116, 108821 (2023).

    [65] D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan et al., Radiative sky cooling: fundamental principles, materials, and applications. Appl. Phys. Rev. 6, 021306 (2019).

    [66] A.R. Gentle, G.B. Smith, Radiative heat pumping from the Earth using surface phonon resonant nanoparticles. Nano Lett. 10, 373–379 (2010).

    [67] A.P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    [68] J. Schmetz, Towards a surface radiation climatology: retrieval of downward irradiances from satellites. Atmos. Res. 23, 287–321 (1989).

    [69] W. Wei, Y. Zhu, Q. Li, Z. Cheng, Y. Yao et al., An Al2O3-cellulose acetate-coated textile for human body cooling. Sol. Energy Mater. Sol. Cells 211, 110525 (2020).

    [70] J.K. Tong, X. Huang, S.V. Boriskina, J. Loomis, Y. Xu et al., Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photon. 2, 769–778 (2015).

    [71] P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016).

    [72] X.A. Zhang, S. Yu, B. Xu, M. Li, Z. Peng et al., Dynamic gating of infrared radiation in a textile. Science 363, 619–623 (2019).

    [73] M.I. Iqbal, F. Sun, B. Fei, Q. Xia, X. Wang et al., Knit architecture for water-actuating woolen knitwear and its personalized thermal management. ACS Appl. Mater. Interfaces 13, 6298–6308 (2021).

    [74] X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang et al., Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 30, 1907562 (2020).

    [75] Y. Wang, D. Shou, S. Shang, K.-L. Chiu, S. Jiang, Development of ZrC/T-shaped ZnO whisker coated dual-mode Janus fabric for thermal management. Sol. Energy 233, 196–203 (2022).

    [76] L. Cai, A.Y. Song, P. Wu, P.-C. Hsu, Y. Peng et al., Warming up human body by nanoporous metallized polyethylene textile. Nat. Commun. 8, 496 (2017).

    [77] T. Hoty, K.H. Lee, H. Zhang, E. Arens, T. Webster, Energy savings from extended air temperature setpoints and reductions in room air mixing. in International Conference on Environmental Ergonomics, Boston, 2–7 August, 2009.

    [78] R.M. Silverstein, G.C. Bassler, Spectrometric identification of organic compounds. J. Chem. Educ. 39, 546 (1962).

    [79] B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, Hoboken, 2004).

    [80] Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105–112 (2018).

    [81] L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou et al., Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3, 1478–1486 (2019).

    [82] Y. Ke, F. Wang, P. Xu, B. Yang, On the use of a novel nanoporous polyethylene (nanoPE) passive cooling material for personal thermal comfort management under uniform indoor environments. Build. Environ. 145, 85–95 (2018).

    [83] P.B. Catrysse, A.Y. Song, S. Fan, Photonic structure textile design for localized thermal cooling based on a fiber blending scheme. ACS Photon. 3, 2420–2426 (2016).

    [84] H.G. Tompkins, T. Tiwald, C. Bungay, A.E. Hooper, Use of molecular vibrations to analyze very thin films with infrared ellipsometry. J. Phys. Chem. B 108, 3777–3780 (2004).

    [85] R. Hu, N. Wang, L. Hou, J. Liu, Z. Cui et al., Bilayer nanoporous polyethylene membrane with anisotropic wettability for rapid water transportation/evaporation and radiative cooling. ACS Appl. Mater. Interfaces 14, 9833–9843 (2022).

    [86] V.C. Malshe, A.K. Bendiganavale, Infrared reflective inorganic pigments. Recent Pat. Chem. Eng. 1, 67–79 (2010).

    [87] F. Bäbler, Reflective pigment compositions go. U.S. Patent 6989056 (2006)

    [88] D. Miao, A. Li, S. Jiang, S. Shang, Fabrication of Ag and AZO/Ag/AZO ceramic films on cotton fabrics for solar control. Ceram. Int. 41, 6312–6317 (2015).

    [89] P. Jeevanandam, R.S. Mulukutla, M. Phillips, S. Chaudhuri, L.E. Erickson et al., Near infrared reflectance properties of metal oxide nanoparticles. J. Phys. Chem. C 111, 1912–1918 (2007).

    [90] B. Kaur, N. Quazi, I. Ivanov, S.N. Bhattacharya, Near-infrared reflective properties of perylene derivatives. Dyes Pigm. 92, 1108–1113 (2012).

    [91] G.B. Smith, A. Gentle, P.D. Swift, A. Earp, N. Mronga, Coloured paints based on iron oxide and silicon oxide coated flakes of aluminium as the pigment, for energy efficient paint: optical and thermal experiments. Sol. Energy Mater. Sol. Cells 79, 179–197 (2003).

    [92] D. Miao, S. Jiang, J. Liu, X. Ning, S. Shang et al., Fabrication of copper and titanium coated textiles for sunlight management. J. Mater. Sci. Mater. Electron. 28, 9852–9858 (2017).

    [93] D. Miao, S. Jiang, S. Shang, Z. Chen, Effect of heat treatment on infrared reflection property of Al-doped ZnO films. Sol. Energy Mater. Sol. Cells 127, 163–168 (2014).

    [94] R. Hrynyk, I. Frydrych, E. Irzmańska, A. Stefko, Thermal properties of aluminized and non-aluminized basalt fabrics. Text. Res. J. 83, 1860–1872 (2013).

    [95] F.L. Zhu, Q.Q. Feng, Preparation, thermal properties and permeabilities of aluminum-coated fabrics destined for thermal radiation protective clothing. Fire Mater. 44, 844–853 (2020).

    [96] D. Miao, S. Jiang, S. Shang, Z. Chen, Highly transparent and infrared reflective AZO/Ag/AZO multilayer film prepared on PET substrate by RF magnetron sputtering. Vacuum 106, 1–4 (2014).

    [97] J. Song, J. Qin, J. Qu, Z. Song, W. Zhang et al., The effects of particle size distribution on the optical properties of titanium dioxide rutile pigments and their applications in cool non-white coatings. Sol. Energy Mater. Sol. Cells 130, 42–50 (2014).

    [98] A. Wong, W.A. Daoud, H.-H. Liang, Y.S. Szeto, Application of rutile and anatase onto cotton fabric and their effect on the NIR reflection/surface temperature of the fabric. Sol. Energy Mater. Sol. Cells 134, 425–437 (2015).

    [99] K. Panwar, M. Jassal, A.K. Agrawal, TiO2–SiO2 Janus particles treated cotton fabric for thermal regulation. Surf. Coat. Technol. 309, 897–903 (2017).

    [100] H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. U.S.A. 117, 14657–14666 (2020).

    [101] N.N. Shi, C.C. Tsai, M.J. Carter, J. Mandal, A.C. Overvig et al., Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization. Light Sci. Appl. 7, 37 (2018).

    [102] X. Shan, L. Liu, Y. Wu, D. Yuan, J. Wang et al., Aerogel-functionalized thermoplastic polyurethane as waterproof, breathable freestanding films and coatings for passive daytime radiative cooling. Adv. Sci. 9, e2201190 (2022).

    [103] X. Ao, B. Li, B. Zhao, M. Hu, H. Ren et al., Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the Sun and outer space. Proc. Natl. Acad. Sci. U.S.A. 119, e2120557119 (2022).

    [104] Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).

    [105] M.M. Hossain, B. Jia, M. Gu, A metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater. 3, 1047–1051 (2015).

    [106] Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat. Commun. 7, 13729 (2016).

    [107] Y.-N. Song, Y. Li, D.-X. Yan, J. Lei, Z.-M. Li, Novel passive cooling composite textile for both outdoor and indoor personal thermal management. Compos. Part A Appl. Sci. Manuf. 130, 105738 (2020).

    [108] Y.-N. Song, M.-Q. Lei, J. Lei, Z.-M. Li, A scalable hybrid fiber and its textile with pore and wrinkle structures for passive personal cooling. Adv. Mater. Technol. 5, 2000287 (2020).

    [109] B. Gu, K. Liang, T. Zhang, F. Qiu, D. Yang et al., Multifunctional laminated membranes with adjustable infrared radiation for personal thermal management applications. Cellulose 27, 8471–8483 (2020).

    [110] N.N. Shi, C.-C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349, 298–301 (2015).

    [111] S.Y. Jeong, C.Y. Tso, Y.M. Wong, C.Y.H. Chao, B. Huang, Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface. Sol. Energy Mater. Sol. Cells 206, 110296 (2020).

    [112] Q. Liu, J. Huang, J. Zhang, Y. Hong, Y. Wan et al., Thermal, waterproof, breathable, and antibacterial cloth with a nanoporous structure. ACS Appl. Mater. Interfaces 10, 2026–2032 (2018).

    [113] M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016).

    [114] P.C. Hsu, X. Liu, C. Liu, X. Xie, H.R. Lee et al., Personal thermal management by metallic nanowire-coated textile. Nano Lett. 15, 365–371 (2015).

    [115] Z. Yu, Y. Gao, X. Di, H. Luo, Cotton modified with silver-nanowires/polydopamine for a wearable thermal management device. RSC Adv. 6, 67771–67777 (2016).

    [116] X. Yue, T. Zhang, D. Yang, F. Qiu, Z. Li et al., Ag nanoparticles coated cellulose membrane with high infrared reflection, breathability and antibacterial property for human thermal insulation. J. Colloid Interface Sci. 535, 363–370 (2019).

    [117] A. Hazarika, B.K. Deka, D. Kim, H.E. Jeong, Y.B. Park et al., Woven kevlar fiber/polydimethylsiloxane/reduced graphene oxide composite-based personal thermal management with freestanding Cu–Ni core-shell nanowires. Nano Lett. 18, 6731–6739 (2018).

    [118] J. Luo, S. Gao, H. Luo, L. Wang, X. Huang et al., Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem. Eng. J. 406, 126898 (2021).

    [119] A. Hazarika, B.K. Deka, D.C. Kim, A.P. Jaiswal, J. Seo et al., Multidimensional wearable self-powered personal thermal management with scalable solar heating and a triboelectric nanogenerator. Nano Energy 98, 107323 (2022).

    [120] J. Wu, M. Zhang, M. Su, Y. Zhang, J. Liang et al., Robust and flexible multimaterial aerogel fabric toward outdoor passive heating. Adv. Fiber Mater. 4, 1545–1555 (2022).

    [121] M.C. Larciprete, Y.S. Gloy, R. Li Voti, G. Cesarini, G. Leahu et al., Temperature dependent emissivity of different stainless steel textiles in the infrared range. Int. J. Therm. Sci. 113, 130–135 (2017).

    [122] J.-S. Roh, Y.-S. Chi, T.J. Kang, Thermal insulation properties of multifunctional metal composite fabrics. Smart Mater. Struct. 18, 025018 (2009).

    [123] L. Fei, Y. Yin, M. Yang, S. Zhang, C. Wang, Wearable solar energy management based on visible solar thermal energy storage for full solar spectrum utilization. Energy Storage Mater. 42, 636–644 (2021).

    [124] I. Ibrahim, D.H. Seo, A.M. McDonagh, H.K. Shon, L. Tijing, Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment. Desalination 500, 114853 (2021).

    [125] N. Zhao, Z. Wang, C. Cai, H. Shen, F. Liang et al., Bioinspired materials: from low to high dimensional structure. Adv. Mater. 26, 6994–7017 (2014).

    [126] H. Jia, J. Zhu, Z. Li, X. Cheng, J. Guo, Design and optimization of a photo-thermal energy conversion model based on polar bear hair. Sol. Energy Mater. Sol. Cells 159, 345–351 (2017).

    [127] X. Yue, M. He, T. Zhang, D. Yang, F. Qiu, Laminated fibrous membrane inspired by polar bear pelt for outdoor personal radiation management. ACS Appl. Mater. Interfaces 12, 12285–12293 (2020).

    [128] E. Pakdel, W. Xie, J. Wang, S. Kashi, J. Sharp et al., Superhydrophobic natural melanin-coated cotton with excellent UV protection and personal thermal management functionality. Chem. Eng. J. 433, 133688 (2022).

    [129] H. Luo, Q. Li, K. Du, Z. Xu, H. Zhu et al., An ultra-thin colored textile with simultaneous solar and passive heating abilities. Nano Energy 65, 103998 (2019).

    [130] J. Xu, S. Jiang, Y. Wang, S. Shang, D. Miao et al., Photo-thermal conversion and thermal insulation properties of ZrC coated polyester fabric. Fibres. Polym. 18, 1938–1944 (2017).

    [131] A.J. Fitzgerald, E. Berry, N.N. Zinovev, G.C. Walker, M.A. Smith et al., An introduction to medical imaging with coherent terahertz frequency radiation. Phys. Med. Biol. 47, R67–R84 (2002).

    [132] H. Toyokawa, Y. Matsui, J. Uhara, H. Tsuchiya, S. Teshima et al., Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp. Biol. Med. 228, 724–729 (2003).

    [133] Y. Li, D.-X. Wu, J.-Y. Hu, S.-X. Wang, Novel infrared radiation properties of cotton fabric coated with nano Zn/ZnO particles. Colloids Surf. A Physicochem. Eng. Aspects 300, 140–144 (2007).

    [134] X. Hu, M. Tian, L. Qu, S. Zhu, G. Han, Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties. Carbon 95, 625–633 (2015).

    [135] K. Qiu, A. Elhassan, T. Tian, X. Yin, J. Yu et al., Highly flexible, efficient, and sandwich-structured infrared radiation heating fabric. ACS Appl. Mater. Interfaces 12, 11016–11025 (2020).

    [136] Y. Tao, T. Li, C. Yang, N. Wang, F. Yan et al., The influence of fiber cross-section on fabric far-infrared properties. Polymers 10, 1147 (2018).

    [137] P.-C. Hsu, C. Liu, A.Y. Song, Z. Zhang, Y. Peng et al., A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 3, e1700895 (2017).

    [138] X. Yue, T. Zhang, D. Yang, F. Qiu, G. Wei et al., Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy 63, 103808 (2019).

    [139] H. Luo, Y. Zhu, Z. Xu, Y. Hong, P. Ghosh et al., Outdoor personal thermal management with simultaneous electricity generation. Nano Lett. 21, 3879–3886 (2021).

    [140] B. Dai, X. Li, T. Xu, X. Zhang, Radiative cooling and solar heating Janus films for personal thermal management. ACS Appl. Mater. Interfaces 14, 18877–18883 (2022).

    [141] K.C.S. Ly, X. Liu, X. Song, C. Xiao, P. Wang et al., A dual-mode infrared asymmetric photonic structure for all-season passive radiative cooling and heating. Adv. Funct. Mater. 32, 2203789 (2022).

    [142] L. Phan, R. Kautz, E.M. Leung, K.L. Naughton, Y. Van Dyke et al., Dynamic materials inspired by cephalopods. Chem. Mater. 28, 6804–6816 (2016).

    [143] E. Kreit, L.M. Mäthger, R.T. Hanlon, P.B. Dennis, R.R. Naik et al., Biological versus electronic adaptive coloration: how can one inform the other? J. R. Soc. Interface. 10, 20120601 (2013).

    [144] G.R.R. Bell, A.M. Kuzirian, S.L. Senft, L.M. Mäthger, T.J. Wardill et al., Chromatophore radial muscle fibers anchor in flexible squid skin. Invertebr. Biol. 132, 120–132 (2013).

    [145] M. Suzuki, T. Kimura, H. Ogawa, K. Hotta, K. Oka, Chromatophore activity during natural pattern expression by the squid Sepioteuthis lessoniana: contributions of miniature oscillation. PLoS ONE 6, e18244 (2011).

    [146] J. Rossiter, B. Yap, A. Conn, Biomimetic chromatophores for camouflage and soft active surfaces. Bioinspir. Biomim. 7, 036009 (2012).

    [147] C. Yu, Y. Li, X. Zhang, X. Huang, V. Malyarchuk et al., Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proc. Natl. Acad. Sci. U.S.A. 111, 12998–13003 (2014).

    [148] C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro et al., Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016).

    [149] C. Xu, G.T. Stiubianu, A.A. Gorodetsky, Adaptive infrared-reflecting systems inspired by cephalopods. Science 359, 1495–1500 (2018).

    [150] E.M. Leung, M. Colorado Escobar, G.T. Stiubianu, S.R. Jim, A.L. Vyatskikh et al., A dynamic thermoregulatory material inspired by squid skin. Nat. Commun. 10, 1947 (2019).

    [151] G. Ye, Y. Wan, J. Wu, W. Zhuang, Z. Zhou et al., Multifunctional device integrating dual-temperature regulator for outdoor personal thermal comfort and triboelectric nanogenerator for self-powered human-machine interaction. Nano Energy 97, 107148 (2022).

    [152] A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002).

    [153] T. Xie, Tunable polymer multi-shape memory effect. Nature 464, 267–270 (2010).

    [154] T. Bera, E.J. Freeman, J.A. McDonough, R.J. Clements, A. Aladlaan et al., Liquid crystal elastomer microspheres as three-dimensional cell scaffolds supporting the attachment and proliferation of myoblasts. ACS Appl. Mater. Interfaces 7, 14528–14535 (2015).

    [155] Q. Zhang, Y. Lv, Y. Wang, S. Yu, C. Li et al., Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat. Commun. 13, 4874 (2022).

    Shidong Xue, Guanghan Huang, Qing Chen, Xungai Wang, Jintu Fan, Dahua Shou. Personal Thermal Management by Radiative Cooling and Heating[J]. Nano-Micro Letters, 2024, 16(1): 153
    Download Citation