• Journal of Inorganic Materials
  • Vol. 39, Issue 9, 965 (2024)
Xiangxia WEI1, Xiaofei ZHANG1, Kailong XU2, and Zhangwei CHEN3,*
Author Affiliations
  • 11. Shandong Key Laboratory of Industrial Control Technology, Institute for Future (IFF), School of Automation, Qingdao University, Qingdao 266071, China
  • 22. College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
  • 33. Additive Manufacturing Institute, Shenzhen University, Shenzhen 518060, China
  • show less
    DOI: 10.15541/jim20240050 Cite this Article
    Xiangxia WEI, Xiaofei ZHANG, Kailong XU, Zhangwei CHEN. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials[J]. Journal of Inorganic Materials, 2024, 39(9): 965 Copy Citation Text show less
    Overview of additive manufacturing of flexible piezoelectric materials
    1. Overview of additive manufacturing of flexible piezoelectric materials
    Summary of classification of piezoelectric materials
    2. Summary of classification of piezoelectric materials
    Schematic diagrams of additive manufacturing processes
    3. Schematic diagrams of additive manufacturing processes
    Schematic diagrams of multi-layer structures of flexible piezoelectric materials
    4. Schematic diagrams of multi-layer structures of flexible piezoelectric materials
    Schematic diagrams of porous structures of flexible piezoelectric materials
    5. Schematic diagrams of porous structures of flexible piezoelectric materials
    Schematic diagrams of interdigital structures of flexible piezoelectric materials
    6. Schematic diagrams of interdigital structures of flexible piezoelectric materials
    Application of 3D-printed flexible piezoelectric materials in energy harvesting
    7. Application of 3D-printed flexible piezoelectric materials in energy harvesting
    Application of 3D-printed flexible piezoelectric materials in piezoelectric sensing
    8. Application of 3D-printed flexible piezoelectric materials in piezoelectric sensing
    Application of 3D-printed flexible piezoelectric materials in human-computer interaction
    9. Application of 3D-printed flexible piezoelectric materials in human-computer interaction
    Application of 3D-printed flexible piezoelectric materials in bioengineering
    10. Application of 3D-printed flexible piezoelectric materials in bioengineering
    MaterialFiller3D printing methodFraction (β phase)/% d33(d31)/(pC·N-1) Output voltageOutput currentRef.
    PVDFBT (10%)DIW78-4 V-[43]
    PVDFTrFE (30%)DIW75-80-298.3 mV-[67]
    PVDFGR (0.03%)DIW61.52d33=-8.70.35 V-[70]
    PVDFGR (1.5%)SLS--16.97 V274 nA[71]
    PVDFBT/AgSLS--10 V142 nA[72]
    PVDFBT/CarbonSLS92.2-5.7 V79.8 nA[73]
    PVDFBT (30%)FDM84.9d33=4.211.5 V220 nA[35]
    PVDFILFDM93.3-8.69 V90.8 nA[74]
    PVDFTPPC (5%)FDM83.8d33=11.856.62 V108.15 nA/cm2[67]
    PVDFBT2FDM95.9-10.9 V126.9 nA[75]
    PVDFIL (2%)FDM90-6 V83 nA[76]
    PVDFIL (15%)FDM97.4-8.2 V300 nA[77]
    PVDFNo fillersFDM56.83d31=0.048-0.106 nA[78]
    PDMSMWCNTsDIW-d33=1070550 mV-[39]
    PDMSBaTiO3DIW--80 V25 mA[33]
    PDMSPNN-PZTDIW-d33=245 V0.1 μA[62]
    PDMSBT (80%)DIW--45 V2.7 μA[40]
    PVDFTrFEIJP--3.6 V2.3μA[53]
    Table 1. Performance comparison of piezoelectric energy harvesters manufactured by 3D printing technology
    Xiangxia WEI, Xiaofei ZHANG, Kailong XU, Zhangwei CHEN. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials[J]. Journal of Inorganic Materials, 2024, 39(9): 965
    Download Citation