• Laser & Optoelectronics Progress
  • Vol. 60, Issue 16, 1610001 (2023)
Yu Sun1, Zhihui Xin1,*, Penghui Huang2, Zhixu Wang1, and Jiayu Xuan1
Author Affiliations
  • 1Yunnan Key Laboratory of Opto-Electronic Information Technology, School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, Yunnan, China
  • 2Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.3788/LOP222462 Cite this Article Set citation alerts
    Yu Sun, Zhihui Xin, Penghui Huang, Zhixu Wang, Jiayu Xuan. SAR Image Sparse Denoising Based on Blind Estimation and Bilateral Filtering[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1610001 Copy Citation Text show less
    Flow chart of the SR-BBF
    Fig. 1. Flow chart of the SR-BBF
    Experimental images. (a) Scene 1; (b) scene 2; (c) scene 3
    Fig. 2. Experimental images. (a) Scene 1; (b) scene 2; (c) scene 3
    Denoising results of scene 1. (a) Noise image; (b) Lee filtering; (c) Frost filtering; (d) BM3D filtering; (e) BF; (f) SR; (g) SR-Bayes; (h) proposed method
    Fig. 3. Denoising results of scene 1. (a) Noise image; (b) Lee filtering; (c) Frost filtering; (d) BM3D filtering; (e) BF; (f) SR; (g) SR-Bayes; (h) proposed method
    Denoising results of scene 2. (a) Noise image; (b) Lee filtering; (c) Frost filtering; (d) BM3D filtering; (e) BF; (f) SR; (g) SR-Bayes; (h) proposed method
    Fig. 4. Denoising results of scene 2. (a) Noise image; (b) Lee filtering; (c) Frost filtering; (d) BM3D filtering; (e) BF; (f) SR; (g) SR-Bayes; (h) proposed method
    Denoising results of scene 3. (a) Noise image; (b) Lee filtering; (c) Frost filtering; (d) BM3D filtering; (e) BF; (f) SR; (g) SR-Bayes; (h) proposed method
    Fig. 5. Denoising results of scene 3. (a) Noise image; (b) Lee filtering; (c) Frost filtering; (d) BM3D filtering; (e) BF; (f) SR; (g) SR-Bayes; (h) proposed method
    Noise-adding images under different σ. (a) Original image; (b) σ=0.5; (c) σ=1; (d) σ=1.5
    Fig. 6. Noise-adding images under different σ. (a) Original image; (b) σ=0.5; (c) σ=1; (d) σ=1.5
    Denoising results under σ=0.5. (a) Noise image; (b) Lee filtering; (c) Frost filtering; (d) BM3D filtering; (e) BF; (f) SR; (g) SR-Bayes; (h) proposed method
    Fig. 7. Denoising results under σ=0.5. (a) Noise image; (b) Lee filtering; (c) Frost filtering; (d) BM3D filtering; (e) BF; (f) SR; (g) SR-Bayes; (h) proposed method
    Denoising results under σ=1. (a) Noise image; (b) Lee filtering; (c) Frost filtering; (d) BM3D filtering; (e) BF; (f) SR; (g) SR-Bayes; (h) proposed method
    Fig. 8. Denoising results under σ=1. (a) Noise image; (b) Lee filtering; (c) Frost filtering; (d) BM3D filtering; (e) BF; (f) SR; (g) SR-Bayes; (h) proposed method
    Denoising results under σ=1.5. (a) Noise image; (b) Lee filtering; (c) Frost filtering ; (d) BM3D filtering; (e) BF; (f) SR; (g) SR-Bayes; (h) proposed method
    Fig. 9. Denoising results under σ=1.5. (a) Noise image; (b) Lee filtering; (c) Frost filtering ; (d) BM3D filtering; (e) BF; (f) SR; (g) SR-Bayes; (h) proposed method
    MethodPSNR /dBENLEPISSIM
    Unfiltered21.1820.19
    Lee23.5772.210.630.53
    Frost23.4049.790.700.51
    BM3D23.13120.030.770.56
    BF24.3039.640.870.66
    SR24.5332.260.860.69
    SR-Bayes24.4943.860.790.61
    Proposed method24.94131.020.800.61
    Table 1. Comparison of denoising quality indicators of scene 1
    MethodPSNR /dBENLEPISSIM
    Unfiltered13.6618.05
    Lee14.2375.480.430.51
    Frost14.8458.240.540.52
    BM3D14.6876.260.510.64
    BF15.6641.460.820.79
    SR14.5144.870.740.70
    SR-Bayes15.8981.200.780.68
    Proposed method16.3893.280.800.75
    Table 2. Comparison of denoising quality indicators of scene 2
    MethodPSNR /dBENLEPISSIM
    Unfiltered27.2120.41
    Lee27.2756.010.470.79
    Frost28.0749.090.550.82
    BM3D27.8275.640.500.81
    BF28.3958.160.780.89
    SR27.5570.020.720.85
    SR-Bayes27.4672.430.750.82
    Proposed method28.7287.620.810.83
    Table 3. Comparison of denoising quality indicators of scene 3
    Methodσ=0.5σ=1σ=1.5
    PSNR /dBENLEPISSIMPSNR /dBENLEPISSIMPSNR /dBENLEPISSIM
    Unfiltered24.121.850.540.6921.570.920.370.4420.130.730.300.32
    Lee24.395.590.680.7423.153.680.760.7721.053.910.640.69
    Frost24.834.320.650.8122.582.580.690.6721.372.410.560.55
    BM3D25.096.720.750.7522.534.580.690.6521.375.510.600.62
    BF25.258.190.730.7422.681.750.470.6220.521.090.360.44
    SR25.4023.950.890.8423.2213.070.670.7221.379.090.600.63
    SR-Bayes25.4125.350.900.8523.1611.620.660.7221.429.710.610.63
    Proposed method25.3228.130.900.8323.4016.600.730.7122.2314.780.700.60
    Table 4. Comparison of image quality indicators after filtering under different noise levels
    ParameterScene 1Scene 2Scene 3Noise-adding image1Noise-adding image 2Noise-adding image 3
    BI0.0180.0580.0260.0240.0150.058
    Table 5. Image blockiness index of the proposed method
    Yu Sun, Zhihui Xin, Penghui Huang, Zhixu Wang, Jiayu Xuan. SAR Image Sparse Denoising Based on Blind Estimation and Bilateral Filtering[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1610001
    Download Citation