[1] Eom K B. Anisotropic adaptive filtering for speckle reduction in synthetic aperture radar images[J]. Optical Engineering, 50, 057206(2011).
[2] Rubel O, Lukin V, Rubel A et al. Selection of lee filter window size based on despeckling efficiency prediction for sentinel SAR images[J]. Remote Sensing, 13, 1887(2021).
[3] Zhu L, Li J M, Pan Y et al. SAR image despeckling algorithm using non-local means with adaptive filtering strength[J]. Journal of Electronics & Information Technology, 43, 1258-1266(2021).
[4] Pan Y, Meng Y H, Zhu L. SAR image despeckling method based on improved Frost filtering[J]. Signal, Image and Video Processing, 15, 843-850(2021).
[5] Papari G, Idowu N, Varslot T. Fast bilateral filtering for denoising large 3D images[J]. IEEE Transactions on Image Processing, 26, 251-261(2017).
[6] Fedorov V, Ballester C. Affine non-local means image denoising[J]. IEEE Transactions on Image Processing, 26, 2137-2148(2017).
[7] Dabov K, Foi A, Katkovnik V et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 16, 2080-2095(2007).
[8] Wu T Q, Xiao W, Li R J et al. Single-molecule localization image background denoising based on time-domain iterative wavelet transform[J]. Chinese Journal of Lasers, 48, 1307001(2021).
[9] Tian X L, Jiao L C, Guo K W. An affinity-based algorithm in nonsubsampled contourlet transform domain: application to synthetic aperture radar image denoising[J]. Journal of Signal Processing Systems, 83, 373-388(2016).
[10] Chu T Y, Tan Y M, Liu Q et al. Novel fusion method for SAR and optical images based on non-subsampled shearlet transform[J]. International Journal of Remote Sensing, 41, 4590-4604(2020).
[11] Huang Q G, Hao B Y, Chang S. Adaptive digital ridgelet transform and its application in image denoising[J]. Digital Signal Processing, 52, 45-54(2016).
[12] Jiang X P, Ding H, Zhang H et al. Study on compressed sensing reconstruction algorithm of medical image based on curvelet transform of image block[J]. Neurocomputing, 220, 191-198(2017).
[13] Liu G, Kang H, Wang Q et al. Contourlet-CNN for SAR image despeckling[J]. Remote Sensing, 13, 764(2021).
[14] Lü Z Y, Han M, Li D C. Denoising of uncertain type noise images by spatial feature classification in nonsubsampled shearlet transform[J]. IEEE Access, 8, 5009-5021(2020).
[15] Zhang X J, Ye W Z. An adaptive second-order partial differential equation based on TV equation and p-Laplacian equation for image denoising[J]. Multimedia Tools and Applications, 78, 18095-18112(2019).
[16] Zhou L, Bi D Y, He L Y. Single color image dehazing using variational partial differential equation[J]. Optics and Precision Engineering, 23, 1466-1473(2015).
[17] Lakra M, Kumar S. A CNN-based computational algorithm for nonlinear image diffusion problem[J]. Multimedia Tools and Applications, 79, 23887-23908(2020).
[18] Shen K, Liu S D, Shi J H et al. Dual-domain neural network for sparse-view photoacoustic image reconstruction[J]. Chinese Journal of Lasers, 49, 0507208(2022).
[19] Kang Y Q, Liu J, Wang Y et al. Low-dose CT 3D reconstruction using convolutional sparse coding and gradient L0-norm[J]. Acta Optica Sinica, 41, 0911005(2021).
[20] Zhang Z, Chen X, Liu L et al. A sparse representation denoising algorithm for visible and infrared image based on orthogonal matching pursuit[J]. Signal, Image and Video Processing, 14, 737-745(2020).
[21] Liu Q G, Wang S S, Ying L et al. Adaptive dictionary learning in sparse gradient domain for image recovery[J]. IEEE Transactions on Image Processing, 22, 4652-4663(2013).
[22] Zhu L, Liu S, Cao S N et al. Nonparametric Bayesian dictionary learning in sparse gradient domain for image denoising[J]. Computer Engineering and Design, 41, 802-807(2020).
[23] Liu X H, Tanaka M, Okutomi M. Single-image noise level estimation for blind denoising[J]. IEEE Transactions on Image Processing, 22, 5226-5237(2013).
[24] Pyatykh S, Hesser J, Zheng L. Image noise level estimation by principal component analysis[J]. IEEE Transactions on Image Processing, 22, 687-699(2013).
[25] Lei L, Xi F, Chen S Y et al. A sparse representation denoising algorithm for finger-vein image based on dictionary learning[J]. Multimedia Tools and Applications, 80, 15135-15159(2021).
[26] Amiraz C, Krauthgamer R, Nadler B. Tight recovery guarantees for orthogonal matching pursuit under Gaussian noise[J]. Information and Inference: A Journal of the IMA, 10, 573-595(2020).
[27] Song Y, Li X Y, Shen Y F et al. Compressed sensing image reconstruction based on low rank of non-local similar patches[J]. Acta Electronica Sinica, 45, 695-703(2017).
[28] Lu X Y, Yang J C, Tan K et al. Range-Doppler image reconstruction for collocated MIMO noise radar by sparse recovery[J]. Remote Sensing Letters, 13, 279-289(2022).
[29] Perra C, Massidda F, Giusto D D. Image blockiness evaluation based on Sobel operator[C], 389(2005).
[30] Dong C Z, Hu L P, Zhu G Q et al. Efficient simulation method for high quality SAR images of complex ground vehicles[J]. Journal of Radars, 4, 351-360(2015).