• Infrared and Laser Engineering
  • Vol. 53, Issue 1, 20230487 (2024)
Shusen Zhao1,2, Hongzhi He1,3, Shifei Han1,2,4, Lu Jiang1,2,4..., Jiabao Du1,2,4, Haijuan Yu1,2,4, Xuechun Lin1,2,4,* and Guling Zhang3,*|Show fewer author(s)
Author Affiliations
  • 1Laboratory of All-Solid-State Light Sources, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Engineering Technology Research Center of All-Solid-State Lasers Advanced Manufacturing, Beijing 100083, China
  • 3College of Science, Minzu University of China, Beijing 100081, China
  • 4College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/IRLA20230487 Cite this Article
    Shusen Zhao, Hongzhi He, Shifei Han, Lu Jiang, Jiabao Du, Haijuan Yu, Xuechun Lin, Guling Zhang. Research on key issues of laser splitting of transparent hard and brittle materials (invited)[J]. Infrared and Laser Engineering, 2024, 53(1): 20230487 Copy Citation Text show less
    References

    [1] O Uteza, Re B Bussi, F Canova, et al. Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes. Applied Surface Science, 254, 799-803(2007).

    [2] X Xie, C Zhou, X Wei, et al. Laser machining of transparent brittle materials: from machining strategies to applications. Opto-Electronic Advances, 2, 180017(2019).

    [3] M Liu, Y Hu, X Sun, et al. Chemical etching mechanism and properties of microstructures in sapphire modified by femtosecond laser. Applied Physics A, 123, 99(2016).

    [4] Jiaqun Li, Jianfeng Yan, Xi Li, . Research advancement on ultrafast laser microprocessing of transparent dielectrics. Chinese Journal of Lasers, 48, 0202019(2021).

    [5] I Miyamoto, Y Okamoto, A Hansen, et al. High speed, high strength microwelding of Si/Glass using ps-laser pulses. Opt Express, 23, 3427-3439(2015).

    [6] S A Lee, J Y Hwang, J P Kim, et al. Dielectric characterization of transparent epitaxial Ga2O3 thin film on n-GaN∕Al2O3 prepared by pulsed laser deposition. Applied Physics Letters, 89, 182906(2006).

    [7] Z Li, X Wang, J Wang, et al. Stealth dicing of sapphire sheets with low surface roughness, zero kerf width, debris/crack-free and zero taper using a femtosecond bessel beam. Optics & Laser Technology, 135, 106713(2021).

    [8] K Liao, W Wang, X Mei, et al. High quality full ablation cutting and stealth dicing of silica glass using picosecond laser bessel beam with burst mode. Ceramics International, 48, 9805-9816(2022).

    [9] Y Lu, Y Li, X Xie, et al. Research advances of femtosecond laser-induced nanogratings for transparent materials. Front Chem, 10, 1082651(2022).

    [10] S Han, H Yu, C He, et al. Laser slicing of 4H-SiC wafers based on picosecond laser-induced micro-explosion via multiphoton processes. Optics & Laser Technology, 154, 108323(2022).

    [11] H Morisaki, F W Ping, H Ono, et al. Above-band-gap photoluminescence from Si fine particles with oxide shell. Journal of Applied Physics, 70, 1869-1870(1991).

    [12] A F Mohammed, Q A Al-Jarwany, A J Clarke, et al. Ablation threshold measurements and surface modifications of 193 nm laser irradiated 4H-SiC. Chemical Physics Letters, 713, 194-202(2018).

    [13] Rtner R Weing, P J Wellmann, M Bickermann, et al. Determination of charge carrier concentration in n- and p-doped SiC based on optical absorption measurements. Applied Physics Letters, 80, 70-72(2002).

    [14] B Yang, H Wang, S Peng, et al. Precision layered stealth dicing of SiC wafers by ultrafast lasers. Micromachines, 13, 1011(2022).

    [15] D Andiwijayakusuma, M Saito, A Purqon. Density functional theory study: Electronic structures of RE: GaN in wurtzite Gα15RE1N16. Journal of Physics: Conference Series, 739, 012027(2016).

    [16] S T Yang, M J Matthews, S Elhadj, et al. Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis. Journal of Applied Physics, 106, 103106(2009).

    [17] Heisterkamp A, Leyder S, Herman P R, et al. On the wavelength dependence of femtosecond laser interactions inside b gap solids [C]Frontiers in Ultrafast Optics: Biomedical, Scientific, Industrial Applications XIII, SPIE LASE, 2013, 8611: 861113.

    [18] G A Bufetova, V V Kashin, S Y Rusanov, et al. Determination of sapphire crystal melt refracttive index in visible range. Journal of Crystal Growth, 575, 126355(2021).

    [19] M V Kondrin, Y B Lebed, V V Brazhkin. Intrinsic planar defects in diamond and the upper limit on its melting temperature. Diamond and Related Materials, 110, 108114(2020).

    [20] Z Cao, D Aslam. Fabrication technology for single-material MEMS using polycrystalline diamond. Diamond and Related Materials, 19, 1263-1272(2010).

    [21] D A Boysen, S M Haile, H Liu, et al. Conductivity of potassium and rubidium dihydrogen phosphates at high temperature and pressure. Chemistry of Materials, 16, 693-697(2004).

    [22] Bihui Hou, Yali Wang, Xinan Chang, . THz-ultraviolet spectra of KDP crystal. Spectroscopy and Spectral Analysis, 30, 2881-2884(2010).

    [23] A Kumar, R Kumar, N Verma, et al. Effect of the band gap and the defect states present within band gap on the non-linear optical absorption behaviour of yttrium aluminium iron garnets. Optical Materials, 108, 110163(2020).

    [24] Sheng Feng, Zhitao Shan, Ruikun Pan, . Thermo-physical property of YAG melt measured by aerodynamic levitation technique. Journal of Inorganic Materials, 33, 1297-1302(2018).

    [25] A Pavlik, S V Ushakov, A Navrotsky, et al. Structure and thermal expansion of Lu2O3 and Yb2O3 up to the melting points. Journal of Nuclear Materials, 495, 385-391(2017).

    [26] G Seguini, E Bonera, S Spiga, et al. Energy-band diagram of metal/Lu2O3/silicon structures. Applied Physics Letters, 85, 5316-5318(2004).

    [27] W C Wang, M Badylevich, V V Afanas’ev, et al. Band alignment and electron traps in Y2O3 layers on (100)Si. Applied Physics Letters, 95, 132903(2009).

    [28] Meiling Luan, Jiaxin Zheng, Xiangchao Sun, . Liquid-assisted laser fabrication of hard materials and applications. Opto-Electronic Engineering, 50, 61-78(2023).

    [29] R Srinivasasn, E Sutcliffe, B Braren. Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses. Applied Physics Letters, 51, 1285-1287(1987).

    [30] C W Cheng, X Z Tsai, J S Chen. Micromachining of stainless steel with controllable ablation depth using femtosecond laser pulses. The International Journal of Advanced Manufacturing Technology, 85, 1947-1954(2016).

    [31] S Hunsche, K Leo, H Kurz, et al. Exciton absorption saturation by phase-space filling: Influence of carrier temperature and density. Phys Rev B Condens Matter, 49, 16565-16568(1994).

    [32] Z Fang, J Chen, X Jiang, et al. Repair of fused silica damage using selective femtosecond laser-induced etching. Crystals, 13, 309(2023).

    [33] F V Grigogrev, V B Sulimov, A V Tikhonravov. Laser-induced thermal stresses in dense and porous silicon dioxide films. Coatings, 11, 394(2021).

    [34] P Polynkin. Intense femtosecond shaped laser beams for writing extended structures inside transparent dielectrics. Applied Physics A, 114, 143-149(2013).

    [35] A M Zheltikov. Ultrafast optical switching of an ionized medium by interfering ultrashort laser pulses. JETP Letters, 90, 90-95(2009).

    [36] K Hu, Z Guo, T Cao, et al. Study on the polarization dependence of nonlinear absorption of ultrafast laser pulses in bulk fused silica. Opt Express, 30, 8949-8958(2022).

    [37] S Wu, D Wu, J Xu, et al. Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation. Optics Express, 20, 28893-28905(2012).

    [38] A Bogatskaya, Y Gulina, N Smirnov, et al. An experimental study of multiphoton ionization in fused silica at IR and visible wavelengths. Photonics, 10, 515(2023).

    [39] K M Koz, N F Troj, P Mal. Hot-carrier transport in diamond controlled by femtosecond laser pulses. New Journal of Physics, 17, 053027(2015).

    [40] M R Marks, K Y Cheong, Z Hassan. A review of laser ablation and dicing of Si wafers. Precision Engineering, 73, 377-408(2022).

    [41] C W Ponader, J F Schroeder, A M Sterltsov. Origin of the refractive-index increase in laser-written waveguides in glasses. Journal of Applied Physics, 103, 063516(2008).

    [42] K Miura, J Qiu, H Inouye, et al. Photowritten optical waveguides in various glasses with ultrashort pulse laser. Applied Physics Letters, 71, 3329-3331(1997).

    [43] O M Efimov, L B Glebov, K A Richardson, et al. Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses. Optical Materials, 17, 379-386(2001).

    [44] F M Bain, W F Silva, A Lagatskya, et al. Microspectroscopy of ultrafast laser inscribed channel waveguides in Yb: tungstate crystals. Applied Physics Letters, 98, 141108(2011).

    [45] L Sudrie, M Franco, B Prade, et al. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses. Optics Communications, 171, 279-284(1999).

    [46] F Liang, R Vallee, S L Chin. Mechanism of nanograting formation on the surface of fused silica. Opt Express, 20, 4389-4396(2012).

    [47] R Taylor, C Hnatovsky, E Simove. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser & Photonics Review, 2, 26-46(2008).

    [48] S Richter, M Heinrich, Ring S D, et al. Nanogratings in fused silica: Formation, control, and applications. Journal of Laser Applications, 24, 042008(2012).

    [49] W Cheng, Z Wang, X Liu, et al. Microexplosions in bulk sapphire driven by simultaneously spatially and temporally focused femtosecond laser beams. Opt Lett, 48, 751-754(2023).

    [50] Nana Peng, Yanyan Huo, Kan Zhou, . The development of femtosecond laser-induced periodic nanostructures and their optical properties. Acta Physica Sinica, 62, 9-16(2013).

    [51] Yiming Lu, Bingrong Gao, Xueqing Liu, . Fabrication of high temperature resistant geometric phase element inside sapphire by femtosecond laser (Invited). Acta Photonica Sinica, 50, 0650107(2021).

    [52] Y Shimotsuma, P G Kazansky, J Qiu, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys Rev Lett, 91, 247405(2003).

    [53] S Juodkazis, K Nishimura, S Tanaka, et al. Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures. Physical Review Letters, 96, 166101(2006).

    [54] Y Huang, X Wu, H Liu, et al. Fabrication of through-wafer 3D microfluidics in silicon carbide using femtosecond laser. Journal of Micromechanics and Microengineering, 27, 065005(2017).

    [55] J Wang, F Fang, H An, et al. Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales. International Journal of Extreme Manufacturing, 5, 012005(2023).

    [56] Z Zhai, W Wang, J Zhao, et al. Influence of surface morphology on processing of C/SiC composites via femtosecond laser. Composites Part A: Applied Science and Manufacturing, 102, 117-125(2017).

    [57] Ohmura E. Temperature Rise of Silicon due to Absption of Permeable Pulse Laser [M]Heat TransferEngineering Applications. London: IntechOpen, 2011.

    [58] E Paoagiakoumou, E Ronzitti, V Emiliani. Scanless two-photon excitation with temporal focusing. Nat Methods, 17, 571-581(2020).

    [59] P S Salter, M J Booth. Adaptive optics in laser processing. Light Sci Appl, 8, 110(2019).

    [60] P S Salter, M Baum, I Alexeev, et al. Exploring the depth range for three-dimensional laser machining with aberration correction. Opt Express, 22, 17644-17656(2014).

    [61] E Kim, Y Shimotsuma, M Sakakura, et al. 4H-SiC wafer slicing by using femtosecond laser double-pulses. Optical Materials Express, 7, 2450(2017).

    [62] X Jia, Y Chen, L Liu, et al. Combined pulse laser: Reliable tool for high-quality, high-efficiency material processing. Optics & Laser Technology, 153, 108209(2022).

    [63] J Hernandez-rueda, J Siegel, D Puerto, et al. Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica. Applied Physics A, 112, 185-189(2012).

    [64] A Rosenfeld, M Rohloff, Hm S H, et al. Formation of laser-induced periodic surface structures on fused silica upon multiple parallel polarized double-femtosecond-laser-pulse irradiation sequences. Applied Surface Science, 258, 9233-9236(2012).

    [65] Wenfeng Liu, Mingying Sun, Yiqun Shi, . Picosecond laser ablation of glass surface by dual-pulse temporal. Chinese Journal of Lasers, 50, 1202201(2023).

    [66] Hongqing Wang, Jisen Wen, Zhenyao Yang, . High-speed parallel two-photon laser direct writing lithography system. Chinese Journal of Lasers, 49, 2202009(2022).

    [67] X W Cao, Y M Lu, H Fan, et al. Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array. Appl Opt, 57, 9604-9608(2018).

    [68] E K Sanchez, S Ha, J Grim, et al. Assessment of polishing-related surface damage in silicon carbide. Journal of the Electrochemical Society, 149, G131(2002).

    [69] J R Grim, M Benamara, M Skowronski, et al. Transmission electron microscopy analysis of mechanical polishing-related damage in silicon carbide wafers. Semiconductor Science and Technology, 21, 1709-1713(2006).

    [70] Shi Erwei. The Growth Defects of Silicon Carbide Crystal [M]. Beijing: Science Press, 2012. (in Chinese)

    [71] M Swoboda, C Beyer, R Rieske, et al. Laser assisted SiC wafering using cold split. Materials Science Forum, 897, 403-406(2017).

    [72] Kling R, Washio K, Klotzbach U, et al. New laser slicing technology named KABRA process enables high speed high efficiency SiC slicing [Z]. Laserbased Micro Nanoprocessing XII, 2018.

    [73] H Wang, Q Chen, Y Yao, et al. Influence of surface preprocessing on 4H-SiC wafer slicing by using ultrafast laser. Crystals, 13, 15(2022).

    [74] Y Zhang, X Xie, Y Huang, et al. Internal modified structure of silicon carbide prepared by ultrafast laser for wafer slicing. Ceramics International, 49, 5249-5260(2023).

    [75] W Geng, Q Shao, Y Pei, et al. Slicing of 4H-SiC wafers combining ultrafast laser irradiation and bandgap-selective photo-electrochemical exfoliation. Advanced Materials Interfaces, 10, 202300200(2023).

    [77] Delphi Laser. Laser processing equipment f silicon carbide wafers [EBOL]. (20230710) [20231019]. http:www.delphilaser.comcontent319.

    [78] Westlake Instruments. SiC substrate laser peeling equipment [EBOL]. (20230524) [20231019]. http:www.westlakeinst.comproducts61.html.

    [79] Disco. Development of a KABRA® Process Optimized f the Production of GaN Wafers [EBOL]. (20211001) [20231019]. https:www.disco.co.jpegnewscpkabra_gan.html.

    [80] V Voronenkov, N Bochkareva, R Gorbunov, et al. Laser slicing: A thin film lift-off method for GaN-on-GaN technology. Results in Physics, 13, 102233(2019).

    [81] F Kaule, M Swoboda, C Beyer, et al. Laser-assisted spalling of large-area semiconductor and solid state substrates. MRS Communications, 8, 127-131(2018).

    [82] F Dross, J Robbelein, B Vandevelde, et al. Stress-induced large-area lift-off of crystalline Si films. Applied Physics A, 89, 149-152(2007).

    [83] H Hirai, H Hidai, S Matsusaka, et al. Diamond slicing using ultrashort laser-induced graphitization and additional nanosecond laser illumination. Diamond and Related Materials, 96, 126-133(2019).

    [84] F Kiel, N M Bulgakova, A Ostendorf, et al. Selective delamination upon femtosecond laser ablation of ceramic surfaces. Physical Review Applied, 11, 024038(2019).

    Shusen Zhao, Hongzhi He, Shifei Han, Lu Jiang, Jiabao Du, Haijuan Yu, Xuechun Lin, Guling Zhang. Research on key issues of laser splitting of transparent hard and brittle materials (invited)[J]. Infrared and Laser Engineering, 2024, 53(1): 20230487
    Download Citation