• Advanced Photonics Nexus
  • Vol. 4, Issue 1, 016007 (2025)
Jie Zhang1,2, Shecheng Gao1,*, Wei Li3, Jiajing Tu1..., Yanghua Xie1, Cheng Du3, Weiping Liu1 and Zhaohui Li2,4|Show fewer author(s)
Author Affiliations
  • 1Jinan University, College of Information Science and Technology, Department of Electronic Engineering, Guangzhou, China
  • 2Sun Yat-Sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou, China
  • 3Fiberhome Telecommunication Technologies Co. Ltd., Wuhan, China
  • 4Southern Laboratory of Ocean Science and Engineering, Zhuhai, China
  • show less
    DOI: 10.1117/1.APN.4.1.016007 Cite this Article Set citation alerts
    Jie Zhang, Shecheng Gao, Wei Li, Jiajing Tu, Yanghua Xie, Cheng Du, Weiping Liu, Zhaohui Li, "Mode-bases gain difference for different phase profiles in few-mode erbium-doped fiber amplifiers," Adv. Photon. Nexus 4, 016007 (2025) Copy Citation Text show less
    References

    [1] D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354-362(2013).

    [2] K. Zou et al. High-capacity free-space optical communications using wavelength-and mode-division-multiplexing in the mid-infrared region. Nat. Commun., 13, 7662(2022).

    [3] P. Sillard et al. Few-mode fiber technology, deployments, and systems. Proc. IEEE, 110, 1804-1820(2022).

    [4] B. J. Puttnam, G. Rademacher, R. S. Luís. Space-division multiplexing for optical fiber communications. Optica, 8, 1186-1203(2021).

    [5] G. Li et al. Space-division multiplexing: the next frontier in optical communication. Adv. Opt. Photonics, 6, 413-487(2014).

    [6] A. Ferrari, E. Virgillito, V. Curri. Band-division vs. space-division multiplexing: a network performance statistical assessment. J. Lightwave Technol., 38, 1041-1049(2020).

    [7] C. Huang et al. High-capacity space-division multiplexing communications with silicon photonic blind source separation. J. Lightwave Technol., 40, 1617-1632(2022).

    [8] Y. Tian et al. Wavelength-interleaved MDM-WDM transmission over weakly coupled FMF. Opt. Express, 25, 16603-16617(2017).

    [9] J. Zhang et al. Mode-division multiplexed transmission of wavelength division multiplexing signals over a 100-km single-span orbital angular momentum fiber. Photonics Res., 8, 1236-1242(2020).

    [10] Y. Xie et al. Design and characterization of nanopore-assisted weakly-coupled few-mode fiber for simpler MIMO space division multiplexing. IEEE Access, 8, 76173-76181(2020).

    [11] Z. Liu et al. Broadband, low-crosstalk, and massive-channels OAM modes de/multiplexing based on optical diffraction neural network. Laser Photonics Rev., 17, 2200536(2023).

    [12] J. Liu et al. 1-Pbps orbital angular momentum fibre-optic transmission. Light Sci. Appl., 11, 202(2022).

    [13] J. Zhu et al. Weakly-coupled MDM-WDM amplification and transmission based on compact FM-EDFA. J. Lightwave Technol., 38, 5163-5169(2020).

    [14] Z. Li et al. Amplification and transmission system with matching multilayer ion-doped FM-EDFA. J. Lightwave Technol., 41, 695-701(2022).

    [15] H. Guo et al. Few-mode erbium-doped fiber amplifier with high gain and low differential modal gain for mode-division-multiplexed systems. J. Lightwave Technol., 41, 6657-6663(2023).

    [16] N. Bai et al. Mode-division multiplexed transmission with inline few mode fiber amplifier. Opt. Express, 20, 2668-2680(2012).

    [17] R. N. Mahalati, D. Askarov, J. M. Kahn. Adaptive modal gain equalization techniques in multi-mode erbium-doped fiber amplifiers. J. Lightwave Technol., 32, 2133-2143(2014).

    [18] L. Bigot, G. Le Cocq, Y. Quiquempois. Few-mode erbium-doped fiber amplifiers: a review. J. Lightwave Technol., 33, 588-596(2015).

    [19] Z. Li et al. A multi-layer erbium-doped air-hole-assisted few-mode fiber with ultra-low differential modal gain. Photonics, 9, 305(2022).

    [20] Q. Zhao et al. Demonstration of a ring-core few-mode erbium-doped fiber for mode gain equalization based on layered doping. JOSA B, 39, 1972-1978(2022).

    [21] W. Xu et al. Gain characteristics of few-mode EDFA with different pump. IEEE Photonics J., 14, 1-7(2022).

    [22] Z. Li et al. Hybrid-pumped few-mode erbium-doped fiber amplifier for gain equalization. IEEE Photonics Technol. Lett., 35, 971-974(2023).

    [23] J.-B. Trinel et al. Latest results and future perspectives on few-mode erbium doped fiber amplifiers. Opt. Fiber Technol., 35, 56-63(2017).

    [24] Q. Qiu et al. High power-efficiency, low DMG cladding-pumped few-mode Er/Yb/P co-doped fiber amplifier for mode division multiplexing. J. Lightwave Technol., 40, 7421-7430(2022).

    [25] C. Zhang et al. Differential mode-gain equalization via femtosecond laser micromachining-induced refractive index tailoring. Light Adv. Manuf., 5, 14(2024).

    [26] C. Matte-Breton et al. Modeling and characterization of cladding pumped erbium-ytterbium co-doped fibers for amplification in communication systems. J. Lightwave Technol., 38, 1936-1944(2020).

    [27] H. Takeshita et al. Configurations of pump injection and reinjection for improved amplification efficiency of turbo cladding pumped MC-EDFA. J. Lightwave Technol., 38, 2922-2929(2020).

    [28] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [29] N. Bozinovic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [30] L. Zhu et al. Experimental demonstration of linearly polarized (lp) modes and orbital angular momentum (OAM) modes conversion in few-mode fiber, ASu2A–98(2015).

    [31] J. Wang, X. Zhang. Orbital angular momentum in fibers. J. Lightwave Technol., 41, 1934-1962(2022).

    [32] M. van den Hout et al. Transmission of 273.6 Tb/s over 1001 km of 15-mode multi-mode fiber using c-band only 16-qam signals. J Lightwave Technol., 42, 1136-1142(2023).

    [33] G. Rademacher et al. Peta-bit-per-second optical communications system using a standard cladding diameter 15-mode fiber. Nat. Commun., 12, 4238(2021).

    [34] T. Xu et al. High-gain integrated in-line few-mode amplifier enabling 3840-km long-haul transmission. Photonics Res., 10, 2794-2801(2022).

    [35] S. Fu et al. Orbital angular momentum comb generation from azimuthal binary phases. Adv. Photonics Nexus, 1, 016003(2022).

    [36] H. Wang et al. Finding the superior mode basis for mode-division multiplexing: a comparison of spatial modes in air-core fiber. Adv. Photonics, 5, 056003(2023).

    [37] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185(1992).

    [38] S. Ramachandran, P. Kristensen. Optical vortices in fiber. Nanophotonics, 2, 455-474(2013).

    [39] S. Li et al. Controllable all-fiber orbital angular momentum mode converter. Opt. Lett., 40, 4376-4379(2015).

    [40] L. Feng et al. All-fiber generation of arbitrary cylindrical vector beams on the first-order poincaré sphere. Photonics Res., 8, 1268-1277(2020).

    [41] Y. Li et al. Superposing multiple LP modes with microphase difference distributed along fiber to generate OAM mode. IEEE Photonics J., 9, 1-9(2017).

    [42] H. Zhang et al. Generation of orbital angular momentum modes using fiber systems. Appl. Sci., 9, 1033(2019).

    [43] T. Wen et al. Third-and fourth-order orbital angular momentum multiplexed amplification with ultra-low differential mode gain. Opt. Lett., 46, 5473-5476(2021).

    [44] J. Wang et al. Tailoring light on three-dimensional photonic chips: a platform for versatile OAM mode optical interconnects. Adv. Photonics, 5, 036004(2023).

    [45] A. Afanasev et al. Nondiffractive three dimensional polarization features of optical vortex beams. Adv. Photonics Nexus, 2, -026001(2023).

    [46] H. Guo et al. Ultra-low-loss all-fiber orbital angular momentum mode division multiplexer based on cascaded fused-biconical mode selective couplers. Adv. Photonics Nexus, 3, 016006(2024).

    [47] Z. Ma, S. Ramachandran. Propagation stability in optical fibers: role of path memory and angular momentum. Nanophotonics, 10, 209-224(2020).

    [48] Y. Yue et al. Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber. IEEE Photonics J., 4, 535-543(2012).

    [49] B. Mao et al. Complex analysis between CV modes and OAM modes in fiber systems. Nanophotonics, 8, 271-285(2018).

    [50] A. Saleh et al. Modeling of gain in erbium-doped fiber amplifiers. IEEE Photonics Technol. Lett., 2, 714-717(1990).

    [51] Y. Xu et al. Experimental measurement of absorption coefficients for effective erbium-doping concentration to optimize few-mode erbium-doped fiber amplifiers with low differential mode gain. Photonics, 8, 185(2021).

    [52] J. Ma et al. Amplification of 18 OAM modes in a ring-core erbium-doped fiber with low differential modal gain. Opt. Express, 27, 38087-38097(2019).

    [53] Y. Jung et al. Optical orbital angular momentum amplifier based on an air-hole erbium-doped fiber. J. Lightwave Technol., 35, 430-436(2017).

    [54] J. Liu et al. Amplifying orbital angular momentum modes in ring-core erbium-doped fiber. Research, 2020, 762375(2020).

    Jie Zhang, Shecheng Gao, Wei Li, Jiajing Tu, Yanghua Xie, Cheng Du, Weiping Liu, Zhaohui Li, "Mode-bases gain difference for different phase profiles in few-mode erbium-doped fiber amplifiers," Adv. Photon. Nexus 4, 016007 (2025)
    Download Citation