• Photonic Sensors
  • Vol. 12, Issue 3, 220301 (2022)
Bowen SONG1, Binglin CHEN1, Chen YU1, and Hua YANG1,2,*
Author Affiliations
  • 1College of Computer Science and Electronic Engineering, Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, Hunan University, Changsha 410082, China
  • 2State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.1007/s13320-022-0644-y Cite this Article
    Bowen SONG, Binglin CHEN, Chen YU, Hua YANG. Ultrasensitive Protein Concentration Characterization Based on Weak Measurements[J]. Photonic Sensors, 2022, 12(3): 220301 Copy Citation Text show less
    References

    [1] Y. Kim, D. S. Yang, P. Katti, and B. Glancy, “Protein composition of the muscle mitochondrial reticulum during postnatal development,” The Journal of Physiology, 2019, 597(10): 2707–2727.

    [2] R. Geesala, P. D. Issure, T. Maretzky, and B. Glancy, “Novel functions of inactive rhomboid proteins in immunity and disease,” Journal of Leukocyte Biology, 2019, 106(4): 823–835.

    [3] J. W. Carbone and S. M. Pasiako, “Dietary protein and muscle mass: translating science to application and health benefit,” Nutrients, 2019, 11(5): 1136.

    [4] D. Li, T Guan, Y. He, F. Liu, A. Yang, Q. He, et al., “A chiral sensor based on weak measurement for the determination of proline enantiomers in diverse measuring circumstances,” Biosensors and Bioelectronics, 2018, 110: 103–109.

    [5] H. Wang, N. Pampati, W. M. McCormick, and L. Bhattacharyya, “Protein nitrogen determination by kjeldahl digestion and ion chromatography,” Journal of Pharmaceutical Sciences, 2016, 105(6): 1851–1857.

    [6] T. E. Dorsey, P. W. McDonald, and O. A. Roels, “A heated biuret-Folin protein assay which gives equal absorbance with different proteins,” Analytical Biochemistry, 1977, 78(1): 156–164.

    [7] P. J. Geiger and S. P. Bessman, “Protein determination by Lowry’s method in the presence of sulfhydryl reagents,” Analytical Biochemistry, 1972, 49(2): 467–473.

    [8] M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Physical Review Letters, 2004, 93(8): 083901.

    [9] K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nature Photonics, 2008, 2(12): 748–753.

    [10] Y. Qin, Y. Li, X. Feng, Z. Liu, H. He, Y. Xiao, et al., “Spin hall effect of reflected light at the air-uniaxial crystal interface,” Optics Express, 2010, 18(16): 16832–16839.

    [11] C. A. Dartora, G. G. Cabrera, K. Z. Nobrega, V. F. Montagner, M. H. K. Matielli, F. K. R. De Campos, et al., “Lagrangian Hamiltonian formulation of paraxial optics and applications: study of gauge symmetries and the optical spin Hall effect,” Physical Review A, 2011, 83(1): 012110.

    [12] S. Murakami, “Dissipationless quantum spin current at room temperature,” Science, 2003, 301(5638): 1348–1351.

    [13] M. J. Mattacchione, E. Adam, V. Driel, M. Henry, C. Hautmann, and M. Betz, “Ultrafast optical imaging of the spin Hall effect of light in semiconductors,” Physical Review B, 2010, 82(4): 045303.

    [14] J. Zhou, H. Qian, C. Chen, J. Zhao, G. Li, Q. Wu, et al., “Optical edge detection based on high-efficiency dielectric metasurface,” Proceedings of the National Academy of Sciences, 2019, 116(23): 11137–11140.

    [15] S. He, J. Zhou, S. Chen, W. Shu, H. Luo, and S. Wen, “Wavelength-independent optical fully differential operation based on the spin-orbit interaction of light,” APL Photonics, 2020, 5(3): 036105.

    [16] S. Chen, X. Ling, W. Shu, H. Luo, and S. Wen, “Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin hall effect,” Physical Review Applied, 2020, 13(1): 014057.

    [17] J. Liu, K. Zeng, W. Xu, S. Chen, H. Luo, and S. Wen, “Ultrasensitive detection of ion concentration based on photonic spin Hall effect,” Applied Physics Letters, 2019, 115(25): 251102.

    [18] R. Wang, J. Zhou, K. Zeng, S. Chen, X. Ling, W. Shu, et al., “Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect,” APL Photonics, 2020, 5(1): 016105.

    [19] Y. Aharonov, D. Z. Albert, and L. Vaidman, “Measurement process in relativistic quantum theory,” Physical Review D, 1986, 34(6): 1805.

    [20] I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, “The sense in which a ‘weak measurement’ of a spin-1/2 particle’s spin component yields a value 100,” Physical Review D, 1989, 40(6): 2112.

    [21] N. W. M. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a weak value,” Physical Review Letters, 1991, 66(9): 1107.

    [22] C. M. Krowne and J. Q. Shen, “Dressed-state mixed-parity transitions for realizing negative refractive index,” Physical Review A, 2009, 79(2): 023818.

    [23] J. Dressel and A. N. Jordan, “Significance of the imaginary part of the weak value,” Physical Review A, 2012, 85(1): 012107.

    [24] A. Di Lorenzo, “Full counting statistics of weak-value measurement,” Physical Review A, 2012, 85(3): 032106.

    [25] S. Pang, S. Wu, and Z. B. Chen, “Weak measurement with orthogonal preselection and postselection,” Physical Review A, 2012, 86(2): 022112.

    [26] H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Physical Review A, 2011, 84(4): 043806.

    [27] S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, “Modified weak measurements for the detection of the photonic spin Hall effect,” Physical Review A, 2015, 91(6): 062105.

    [28] Y. Wang, S. Chen, S. Wen, and H. Luo, “Realization of ultra-small stress birefringence detection with weak-value amplification technique,” Applied Physics Letters, 2021, 118(16): 161104.

    [29] J. Maynard and G. Georgiou, “Antibody engineering,” Annual Review of Biomedical Engineering, 2000, 2(1): 339–376.

    [30] R. S. Cahn, C. Ingold, and V. Prelog, “Specification of molecular chirality,” Angewandte Chemie International Edition in English, 1966, 5(4): 385–415.

    [31] D. Li, Z. Shen, Y. He, Y. Zhang, Z. Chen, and H. Ma, “Application of quantum weak measurement for glucose concentration detection,” Applied Optics, 2016, 55(7): 1697–1702.

    [32] X. Qiu, L. Xie, X. Liu, L. Luo, Z. Zhang, and J. Du, “Estimation of optical rotation of chiral molecules with weak measurements,” Optics Letters, 2016, 41(17): 4032–4035.

    [33] L. Xie, X. Qiu, L. Luo, X. Liu, Z. Li, Z. Zhang, et al., “Quantitative detection of the respective concentrations of chiral compounds with weak measurements,” Applied Physics Letters, 2017, 111(19): 191106.

    [34] Y. Xu, L. Shi, T. Guan, D. Li, Y. Yang, X. Wang, et al., “Optimization of a quantum weak measurement system with digital filtering technology,” Applied Optics, 2018, 57(27): 7956–7966.

    [35] D. Li, T. Guan, F. Liu, A. Yang, Y. He, Q. He, et al., “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Applied Physics Letters, 2018, 112(21): 213701.

    Bowen SONG, Binglin CHEN, Chen YU, Hua YANG. Ultrasensitive Protein Concentration Characterization Based on Weak Measurements[J]. Photonic Sensors, 2022, 12(3): 220301
    Download Citation